Epidermal growth factor-like domain 7 (EGFL7) is a secreted factor implicated in cellular responses such as cell migration and blood vessel formation; however the molecular mechanisms underlying the effects of EGFL7 are largely unknown. Here we have identified transmembrane receptors of the Notch family as EGFL7-binding molecules. Secreted EGFL7 binds to a region in Notch involved in ligand-mediated receptor activation, thus acting as an antagonist of Notch signalling. Expression of EGFL7 in neural stem cells (NSCs) in vitro decreased Notch-specific signalling and consequently, reduced proliferation and self-renewal of NSCs. Such altered Notch signalling caused a shift in the differentiation pattern of cultured NSCs towards an excess of neurons and oligodendrocytes. We identified neurons as a source of EGFL7 in the brain, suggesting that brain-derived EGFL7 acts as an endogenous antagonist of Notch signalling that regulates proliferation and differentiation of subventricular zone-derived adult NSCs.
Complement factor H-related (FHR) proteins display structural and functional similarities to each other and to the complement regulator factor H (FH). FHRs have been identified in various species, including human, rat, and the fish barred sand bass. As mice provide a useful model system to study the physiological role of FHRs in vivo, we aimed at characterizing murine FHR proteins. Two putative FHRs of approximately 100 and 38 kDa were detected in mouse plasma using FH-specific antiserum. In a liver cDNA library, three murine FHR-encoding transcripts were identified. Two clones code for related FHR proteins termed FHR-C and FHR-C_v1, which in secreted form are composed of 14 and 13 short consensus repeat (SCR) domains, homologous to SCRs 6-17 and 19-20 of FH. The third transcript, FHR-B, is derived from a separate gene and codes for a secreted protein composed of five SCR domains. FHR-B displays homology to SCRs 5-7 and 19-20 of FH. Expression of FHR-B in various tissues was analyzed by real-time polymerase chain reaction and was identified at high levels in liver, kidney and heart. In liver, FHR-B transcript level was even higher than that of FH. In addition, FHR-B was expressed as a recombinant 37-kDa protein, and this recombinant FHR-B interacted with the ligands heparin and human C3b. Using mouse plasma, the native presumptive FHR proteins were also analyzed in binding assays. In summary, we identify two FHR proteins in mice and for the first time characterize a murine FHR as a heparin- and C3b-binding protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.