Recent studies suggest that synaptic pathology in autism spectrum disorder (ASD) might be caused by the disruption of a signaling pathway at excitatory glutamatergic synapses, which can be influenced by environmental factors. Some factors, such as prenatal zinc deficiency, dysfunction of metallothioneins as well as deletion of COMMD1, all affect brain metal-ion homeostasis and have been associated with ASD. Given that COMMD1 regulates copper levels and that copper and zinc have antagonistic properties, here, we followed the idea that copper overload might induce a local zinc deficiency affecting key players of a putative ASD pathway such as ProSAP/Shank proteins as reported before. Our results show that increased copper levels indeed interfere with intracellular zinc concentrations and affect synaptic ProSAP/Shank levels, which similarly are altered by manipulation of copper and zinc levels through overexpression and knockdown of COMMD1. In line with this, acute and prenatal copper overload lead to local zinc deficiencies in mice. Pups exposed to prenatal copper overload furthermore show a reduction in ProSAP/Shank protein levels in the brain as well as a decreased NMDAR subunit 1 concentration. Thus, it might be likely that brain metal ion status influences a distinct pathway in excitatory synapses associated with genetic forms of ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.