Background: Matrix metalloproteinases (MMPs) have a pivotal role in the destruction of cartilage in rheumatoid arthritis (RA), which is mediated by the fibroblast-like synoviocytes (FLS). Objective: To examine the in vitro invasiveness of synoviocytes obtained from inflamed joints of patients with arthritis in relation to the expression of MMP 1-14, 17, 19, cathepsin-K, the tissue inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2 by FLS. Methods: FLS were derived from 56 patients (30 with RA, 17 with osteoarthritis (OA), and nine with avascular necrosis (AVN)). Invasive growth of FLS through an artificial matrix (Matrigel) was measured in a transwell system. The number of cells that migrated through the matrix were counted. Proliferation rate was determined by counting the FLS after seven days of culturing. Expression of MMPs, cathepsin-K and TIMPs was investigated with reverse transcriptase-polymerase chain reaction and related to the expression of a household gene, β-actin. Results: FLS from RA showed greater invasive growth than FLS from OA and AVN. The median number of cells that grew through the matrix membrane was 4788 for RA, significantly higher than the number for OA, 1875 (p<0.001) and for AVN, 1530 (p=0.014). The median rate of proliferation of RA FLS was 0.27 per day compared with OA 0.22 per day (p= 0.012) and AVN 0.25 per day, but there was no correlation between the rate of proliferation and invasive growth in vitro. FLS from RA and OA that expressed MMP-1, MMP-3, or MMP-10 were significantly more invasive (median number of invasive cells: 3835, 4248, 4990, respectively) than cells that did not express these MMPs (1605, p=0.03; 1970, p=0.004; 2360, p=0.012, respectively). There was also a significant relationship between the expression of MMP-1 and MMP-9 and the diagnosis RA (both p=0.013). The expression levels of mRNA for MMP-1 and MMP-2 correlated with the protein levels produced by the synoviocytes as measured by an enzyme linked immunosorbent assay (ELISA). Conclusion: FLS of RA invade more aggressively in a Matrigel matrix than OA and AVN FLS; this is not because of a higher rate of proliferation of RA FLS. The significant correlation between the expression of MMP-1, MMP-3, and MMP-10 and invasive growth in a Matrigel transwell system suggests that these MMPs play a part in the invasive growth of FLS obtained from patients with RA.
Objective. Rheumatoid arthritis (RA) is characterized by inflammation and destruction of synovial joints. Fibroblast-like synoviocytes (FLS) harvested from synovial tissue of patients with RA can invade normal human cartilage in severe combined immunodeficient (SCID) mice and Matrigel basement membrane matrix in vitro. This study was undertaken to investigate the association of these in vitro characteristics with disease characteristics in patients with RA.Methods. Synovial tissue samples from 72 RA and 49 osteoarthritis (OA) patients were obtained. Samples of different joints were collected from 7 patients with RA. The FLS invasiveness in Matrigel was studied, and the intraindividual and interindividual differences were compared. From the patients with FLS who exhibited the most extreme differences in in vitro ingrowth (most and least invasive FLS), radiographs of the hands and feet were collected and scored according to the Sharp/ van der Heijde method to determine the relationship between in vitro invasion data and estimated yearly joint damage progression.Results. FLS from patients with RA were more invasive than FLS from patients with OA (P < 0.001). The mean intraindividual variation in FLS invasion was much less than the mean interindividual variation (mean ؎ SD 1,067 ؎ 926 and 3,845 ؎ 2,367 for intraindividual and interindividual variation, respectively; P ؍ 0.035), which shows that the level of FLS invasion is a patient characteristic. The mean ؎ SEM Sharp score on radiographs of the hands or feet divided by the disease duration was 4.4 ؎ 1.1 units per year of disease duration in patients with the least invasive FLS (n ؍ 9), which was much lower compared with the 21.8 ؎ 3.1 units per year of disease duration in patients with the most invasive FLS (n ؍ 9) (P < 0.001).Conclusion. The ex vivo invasive behavior of FLS from RA patients is associated with the rate of joint destruction and is a patient characteristic, given the much smaller intraindividual than interindividual FLS variation.
The healthy synovial lining layer consists of a single cell layer that regulates the transport between the joint cavity and the surrounding tissue. It has been suggested that abnormalities such as somatic mutations in the p53 tumor-suppressor gene contribute to synovial hyperplasia and invasion in rheumatoid arthritis (RA). In this study, expression of epithelial markers on healthy and diseased synovial lining tissue was examined. In addition, we investigated whether a regulated process, resembling epithelial to mesenchymal transition (EMT)/fibrosis, could be responsible for the altered phenotype of the synovial lining layer in RA. Synovial tissue from healthy subjects and RA patients was obtained during arthroscopy. To detect signs of EMT, expression of E-cadherin (epithelial marker), collagen type IV (indicator of the presence of a basement membrane) and α-smooth muscle actin (α-sma; a myofibroblast marker) was investigated on frozen tissue sections using immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from healthy subjects were isolated and subjected to stimulation with synovial fluid (SF) from two RA patients and to transforming growth factor (TGF)-β. To detect whether EMT/fibrotic markers were increased, expression of collagen type I, α-sma and telopeptide lysylhydroxylase (TLH) was measured by real time PCR. Expression of E-cadherin and collagen type IV was found in healthy and arthritic synovial tissue. Expression of α-sma was only found in the synovial lining layer of RA patients. Stimulation of healthy FLSs with SF resulted in an upregulation of α-sma and TLH mRNA. Collagen type I and TLH mRNA were upregulated after stimulation with TGF-β. Addition of bone morphogenetic protein (BMP)-7 to healthy FLS stimulated with SF inhibited the expression of α-sma mRNA. The finding that E-cadherin and collagen type IV are expressed in the lining layer of healthy and arthritic synovium indicates that these lining cells display an epithelial-like phenotype. In addition, the presence of α-sma in the synovial lining layer of RA patients and induction of fibrotic markers in healthy FLSs by SF from RA patients indicate that a regulated process comparable to EMT might cause the alteration in phenotype of RA FLSs. Therefore, BMP-7 may represent a promising agent to counteract the transition imposed on synoviocytes in the RA joint.
From these data we conclude that HAdV-5-based vectors carrying nitroreductase can be used to sensitize interface tissue. Instead of contrast medium the clinical protocol will use an alternative visualization procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.