The return of conditioned fear after successful extinction (eg, following exposure therapy) is a significant problem in the treatment of anxiety disorders and posttraumatic stress disorder (PTSD). Targeting the reconsolidation of fear memories may allow a more lasting effect as it intervenes with the original memory trace. Indeed, several pharmacological agents and behavioral interventions have been shown to alter (enhance, impair, or otherwise update) the reconsolidation of reactivated memories of different types. Cortisol is a stress hormone and a potent modulator of learning and memory, yet its effects on fear memory reconsolidation are unclear. To investigate whether cortisol intervenes with the reconsolidation of fear memories in healthy males and how specific this effect might be, we built a 3-day reconsolidation design with skin conductance response (SCR) as a measure of conditioned fear: Fear acquisition on day 1; reactivation/no-reactivation of one conditioned stimulus and pharmacological intervention on day 2; extinction learning followed by reinstatement and reinstatement test on day 3. The groups differed only in the experimental manipulation on day 2: Reactivation+Cortisol Group, Reactivation+Placebo Group, or No-reactivation+Cortisol Group. Our results revealed an enhancing effect of cortisol on reconsolidation of the reactivated memory. The effect was highly specific, strengthening only the memory of the reactivated conditioned stimulus and not the non-reactivated one. Our findings are in line with previous findings showing an enhancing effect of behavioral stress on the reconsolidation of other types of memories. These results have implications for the understanding and treatment of anxiety disorders and PTSD.
Extinction of conditioned fear embodies a crucial mechanism incorporated in exposure therapy. Clinical studies demonstrated that application of the stress hormone cortisol before exposure sessions facilitates exposure success, but the underlying neural correlates remain unknown. Context- and stimulus-dependent cortisol effects on extinction learning will be characterized in this study and tested in the extinction and in a new context. Forty healthy men participated in a 3-day fear conditioning experiment with fear acquisition in context A (day 1), extinction training in context B (day 2), and recall in context B and a new context C one week later (day 3). Hydrocortisone (30 mg) or placebo was given before extinction training. Blood-oxygen-level-dependent responses and skin conductance responses (SCRs) served as dependent measures. At the beginning of extinction training, cortisol reduced conditioned SCRs, diminished activation of the amygdala-hippocampal complex, and enhanced functional connectivity of the anterior parahippocampal gyrus with the ventromedial prefrontal cortex (vmPFC). After one week, the cortisol group showed increased hippocampal activation and connectivity to the vmPFC toward an extinguished stimulus and reduced insula activation toward a nonextinguished stimulus in the extinction context. However, this inhibitory cortisol effect did not extend to the new context. Taken together, cortisol reduced fear recall at the beginning of extinction and facilitated the consolidation of the extinction memory as evidenced by an inhibitory activation pattern one week later. The stress hormone exerted a critical impact on the amygdala-hippocampus-vmPFC network underlying fear and extinction memories. However, cortisol did not attenuate the context dependency of extinction.
Empathy is a core prerequisite for human social behavior. Relatively, little is known about how empathy is influenced by social stress and its associated neuroendocrine alterations. The current study was designed to test the impact of acute stress on emotional and cognitive empathy. Healthy male participants were exposed to a psychosocial laboratory stressor (trier social stress test, (TSST)) or a well-matched control condition (Placebo-TSST). Afterwards they participated in an empathy test measuring emotional and cognitive empathy (multifaceted empathy test, (MET)). Stress exposure caused an increase in negative affect, a rise in salivary alpha amylase and a rise in cortisol. Participants exposed to stress reported more emotional empathy in response to pictures displaying both positive and negative emotional social scenes. Cognitive empathy (emotion recognition) in contrast did not differ between the stress and the control group. The current findings provide initial evidence for enhanced emotional empathy after acute psychosocial stress.
Reactivation of an already consolidated memory makes it labile for a period of several hrs, which are required for its reconsolidation. Evidence suggests that the return of conditioned fear through spontaneous recovery, reinstatement, or renewal can be prevented by blockading this reconsolidation process using pharmacological or behavioral interventions. Postretrieval-extinction learning has been shown to prevent the return of cued fear in humans using fear-irrelevant stimuli, as well as cued and contextual fear in rodents. The effects of postretrieval extinction on human contextually controlled cued fear to fear-relevant stimuli remain unknown, and are the focus of the present study. The experimental design was based on 3 consecutive days: acquisition, reactivation and extinction, and re-extinction. For the fear conditioning, 2 zoo frames served as different contexts, 5 fear-relevant stimuli (aversive animal pictures) served as conditioned stimuli (CS), electric shocks served as unconditioned stimuli (UCS). Expectancy ratings and skin-conductance response (SCR) were used as measures of fear responses; spontaneous recovery and renewal were used as indicators of the return of fear. The expectancy ratings and SCR results indicated spontaneous recovery on the third day, regardless of retrieval prior to extinction. No robust renewal effect was seen. It is suggested that the use of fear-relevant stimuli, the context salience, or reactivation context may explain the lack of reconsolidation effect. Our study indicates that the beneficial effects of postretrieval-extinction learning are sensitive to subtle methodological changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.