Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.
In chronic myeloid leukemia (CML), the translocation t(9;22) results in the fusion protein BCR-ABL (breakpoint cluster region-abelson murine leukemia), a tyrosine kinase mediating oncogenic signaling which is successfully targeted by treatment with BCR-ABL inhibitors like imatinib. However, BCR-ABL inhibitors may also affect antitumor immunity. For instance, it was reported that imatinib impairs the function of dendritic cells (DCs) that play a central role in initiating and sustaining T cell responses. Meanwhile, second generation BCR-ABL inhibitors like nilotinib, which inhibits BCR-ABL with enhanced potency have become standard of treatment, at least in patients with BCR-ABL kinase domain mutations. In this study we analyzed the influence of therapeutic concentrations of nilotinib on human monocyte-derived DCs and compared its effects to imatinib. We found that both tyrosine kinase inhibitors (TKI) comparably and significantly impaired differentiation of monocytes to DCs as revealed by curtated downregulation of CD14 and reduced upregulation of CD1a and CD83. This was only partially restored after withdrawal of the TKI. Moreover, both TKI significantly reduced activation-induced IL-12p70 and C-C motif chemokine ligand (CCL) 3 secretion, while divergent TKI effects for CCL2 and CCL5 were observed. In contrast, only nilotinib significantly impaired the migratory capacity of DCs and their capacity to induce T-cell immune responses in MLRs. Our results indicate that imatinib and nilotinib may differ significantly with regard to their influence on antitumor immunity. Thus, for future combinatory approaches and particularly stop studies in CML treatment, choice of the most suitable BCR-ABL inhibitor requires careful consideration.
Summary Dendritic cells (DCs) are sentinels of the immune system that bridge innate and adaptive immunity. By capturing antigens in peripheral tissue, processing and presenting them with concurrent expression of co‐stimulatory molecules and cytokine secretion they control and modulate immune reactions. Through pattern recognition receptors, DCs sense molecules that are associated with infection or tissue damage, frequently resulting in the formation of inflammasomes upon intracellular stimulation. The inherited autoinflammatory familial Mediterranean fever (FMF) is associated with deregulated activity of the pyrin inflammasome leading to acute inflammatory episodes. However, differentiation and function of DCs in this disease are as yet unclear. Therefore, we first determined DC subpopulation frequency in peripheral blood of a cohort of FMF patients. Joint evaluation without classification according to specific patient characteristics, such as mutational status, did not disclose significant differences compared to healthy controls. For the further examination of phenotype and function, we used immature and mature monocyte‐derived DCs (imMo‐DCs, mMo‐DCs) that were generated in vitro from FMF patients. Immunophenotypical analysis of imMo‐DCs revealed a significantly elevated expression of CD83, CD86 and human leukocyte antigen D‐related (HLA‐DR) as well as a significant down‐regulation of CD206, CD209 and glycoprotein NMB (GPNMB) in our FMF patient group. Furthermore, FMF imMo‐DCs presented a significantly higher capacity to migrate and to stimulate the proliferation of unmatched allogeneic T cells. Finally, the transition towards a more mature, and therefore activated, phenotype was additionally reinforced by the fact that peripheral blood DC populations in FMF patients exhibited significantly increased expression of the co‐stimulatory molecule CD86.
Background:Psoriasis is a frequent skin disease that can appear with an arthritic manifestation in approximately 30% of the cases [1]. The underlying excessive immune reaction caused by pro-inflammatory cytokines can be triggered by several risk factors [2]. Various subgroups of Dendritic cells (DCs) in the skin play a crucial role in the induction of the dermal inflammatory response [3].Objectives:As the role of peripheral blood DCs remains unknown and the cause of an arthritic manifestation is still not completely understood [4], this project aimed to detect differences in phenotype or function of peripheral blood DCs in psoriatic patients with or without arthritis.Methods:We analyzed peripheral blood cells of 60 psoriasis patients with and without arthritis. Different DC subpopulations were detected by flow cytometry. Monocyte-derived DCs were cultured with or without Lipopolysaccharides to gain immature (iDC) and mature (mDC) cells. The DC phenotype was determined by staining with CD80, CD83, CD86, CD206, CCR7, CD1a, HLA-DR, CD40, GPN-MB, DC209 and CD14. Their T-cell stimulatory capability was analyzed by co-incubation with Carboxyfluorescein succinimidyl ester stained lymphocytes and the quantification of CD4+ T-lymphocytes afterwards. To measure the migration capacity DCs were seated into transwell chambers with a semipermeable membrane and partly supplemented with Macrophage Inflammatory Protein 3 Beta (Mip3b). Migrated cells were detected by flow cytometry. Measured cell counts were normalized to cell counts without Mip3b stimulation.Results:Comparing the factor of increase of migrated mDC counts due to mip3b stimulation, we detected a significant lower rate in samples of patients with arthritis (PsA) compared to those of patients without (Ps). Assays of mDCs without mip3b stimulation showed a significant higher count of migrated cells in the samples of the arthritic group [Figure 1]. Cell counts with Mip3b stimulation did vary slightly in the groups. The DC subpopulations and the expression of analyzed cell surface proteins did not show significant differences. The amounts of stimulated T-Lymphocytes did not differ significantly.Figure 1.Migration essay showing mDCs following Mip3b (+miß3b) as multiples of mDCs without stimulation (-mip3b). The factor of increase is significantly lower in patients with arthritis (PsA) compared to patients without (Ps). Absolute counts of migrated mDCs without Mip3b are significantly higher in the arthritic group. Cell counts with stimulation do not differ significantly (data not shown). N=24, p<0.05Conclusion:CCL19 (Mip3b) is a potent ligand to the CCR7 receptor inducing migration of DCs towards the lymphatic node [5]. The CCR7 amounts on the DC surface did not differ significantly in the groups. The mDCs without CCL19 stimulation migrated in higher amounts in samples of arthritic patients. Cell counts of stimulated DCs showed only slight differences. These results could be generated by a different appearance of the DCs of arthritic patients that might facilitate migration. Further experiments focusing on this aspect should be performed. A possible effect of disruptive factors (age, sex, medication…) needs to be clarified.References:[1]Henes, J.C., et al.,High prevalence of psoriatic arthritis in dermatological patients with psoriasis: a cross-sectional study.Rheumatol Int, 2014.34(2): p. 227-34.[2]Lee, E.B., et al.,Psoriasis risk factors and triggers.Cutis, 2018.102(5s): p. 18-20.[3]Kim, T.G., S.H. Kim, and M.G. Lee,The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis.Int J Mol Sci, 2017.19(1).[4]Veale, D.J. and U. Fearon,The pathogenesis of psoriatic arthritis.Lancet, 2018.391(10136): p. 2273-2284.[5]Ricart, B.G., et al.,Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4.J Immunol, 2011.186(1): p. 53-61.Acknowledgments:This project was financially supported by Novartis Pharma GmbH.Disclosure of Interests:Sarah Schnitte Grant/research support from: Reaserch grant by Novartis, Alexander Fuchs: None declared, Tanja Funk: None declared, Ann-Christin Pecher: None declared, Daniela Dörfel: None declared, Jörg Henes Grant/research support from: Novartis, Roche-Chugai, Consultant of: Novartis, Roche, Celgene, Pfizer, Abbvie, Sanofi, Boehringer-Ingelheim,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.