Allogeneic natural killer (NK) cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity, and T-cell depletion during good manufacturing practice (GMP)-grade NK cell selection. Forty NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T-cell depletion, either the depletion 2.1 program in single or double procedure (D2.11depl, n = 18; D2.12depl, n = 13) or the faster depletion 3.1 (D3.1, n = 9) was used on the CliniMACS instrument. Seventeen purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59 × 108 CD56+CD3− cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.11depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p < 0.01) and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.11depl/2depl with regard to recovery of CD56+CD3− NK cells (68% vs. 41%/38%). Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T-cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.
NK group 2D (NKG2D)-expressing NK cells exhibit cytolytic activity against various tumors after recognition of the cellular ligand MHC class I chain-related gene A (MICA). However, release of soluble MICA (sMICA) compromises NKG2D-dependent NK-cell cytotoxicity leading to tumor escape from immunosurveillance. Although some molecular details of the NKG2D-MICA interaction have been elucidated, its impact for donor NK (dNK) cellbased therapy of solid tumors has not been studied. Within an ongoing phase I/II trial, we used allogeneic IL-2 activated dNK cells after haploidentical stem cell transplantation for immunotherapy of patients with high-risk stage IV neuroblastoma. NKG2D levels on activated dNK cells increased strongly when compared with freshly isolated dNK cells and correlated with enhanced NK-cell cytotoxicity. Most importantly, elevated sMICA levels in patients plasma correlated significantly with impaired dNK-cell-mediated cytotoxicity. This effect could be reversed by high-dose infusion of activated dNK cells, which display high levels of surface NKG2D. Our data suggest that the provided excess of NKG2D leads to clearance of sMICA and preserves cytotoxicity of dNK cells via non-occupied NKG2D. In conclusion, our results identify this tumor immune escape mechanism as a target to improve immunotherapy of neuroblastoma and presumably other tumors.
The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56CD3) was carried out with the CliniMACS Prodigy in a single process, starting with approximately 1.2 × 10 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO10, CellGro, TexMACS, and NK MACS). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56CD3 target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3 depletion and CD56 enrichment steps. Manually performed experiments to test different culture media demonstrated significantly higher NK cell expansion rates and an approximately equal distribution of CD56CD16 and CD56CD16 NK subsets on day 14 with cells cultivated in NK MACS media. Moreover, effector cell expansion in manually performed experiments with NK MACS containing IL-2 and irradiated autologous FCs and IL-21, both added at the initiation of the culture, induced an 85-fold NK cell expansion. Compared to freshly isolated NK cells, expanded NK cells expressed significantly higher levels of NKp30, NKp44, NKG2D, TRAIL, FasL, CD69, and CD137, and showed comparable cell viabilities and killing/degranulation activities against tumor and leukemic cell lines in vitro. NK cells used for CAR transduction showed the highest anti-CD123 CAR expression on day 3 after gene modification. These anti-CD123 CAR-engineered NK cells demonstrated improved cytotoxicity against the CD123 AML cell line KG1a and primary AML blasts. In addition, CAR NK cells showed higher degranulation and enhanced secretion of tumor nec...
Abbreviations: ADCC, antigen-dependent cellular cytotoxicity; HNSCC, head-and-neck squamous cell carcinoma; HSCT, haploidentical stem cell transplantation; KIR, killer cell immunoglobulin-like receptor; NCR, natural cytotoxicity receptor; NK, natural killer; NKG2D, natural-killer group 2, member D; vitsMICA/NKG2DL, soluble major histocompatibility complex Class I chain-related peptide A; TGFb1, transforming growth factor beta 1; TIEM, tumor immune escape mechanismDisseminated head-and-neck squamous cell carcinoma (HNSCC) escapes immune surveillance and thus frequently manifests as fatal disease. Here, we report on the distribution of distinct immune cell subpopulations, natural killer (NK) cell cytotoxicity and tumor immune escape mechanisms (TIEMs) in 55 HNSCC patients, either at initial diagnosis or present with tumor relapse. Compared to healthy controls, the regulatory NK cells and the ratio of pro/antiinflammatory cytokines were decreased in HNSCC patients, while soluble major histocompatibility complex Class I chain-related peptide A (sMICA) and transforming growth factor b 1 (TGFb 1 ) plasma levels were markedly elevated. Increased sMICA and TGFb 1 concentrations correlated with tumor progression and staging characteristics in 7 follow-up HNSCC patients, with significantly elevated levels of both soluble factors from the time of initial diagnosis to that of relapse. Patient plasma containing elevated sMICA and TGFb 1 markedly impaired NKG2D-dependent cytotoxicity against HNSCC cells upon incubation with patient-derived and IL-2 activated NK cells vs. those derived from healthy donors. Decreased antitumor recognition was accompanied by reduced NKG2D expression on the NK cell surface and an enhanced caspase-3 activity. In-vitro blocking and neutralization experiments demonstrated a synergistic negative impact of sMICA and TGFb 1 on NK cell functionality. Although we previously showed the feasibility and safety of transfer of allogeneic donor NK cells in a prior clinical study encompassing various leukemia and tumor patients, our present results suggest the need for caution regarding the sole use of adoptive NK cell transfer. The presence of soluble NKG2D ligands in the plasma of HNSCC patients and the decreased NK cell cytotoxicity due to several factors, especially TGFb 1 , indicates timely depletion of these immunosuppressing molecules may promote NK cell-based immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.