The nucleotide NAADP was recently discovered as a second messenger involved in the initiation and propagation of Ca 2؉ signaling in lymphoma T cells, but its impact on primary T cell function is still unknown. An optimized, synthetic, small molecule inhibitor of NAADP action, termed BZ194, was designed and synthesized. antagonism ͉ nucleotide ͉ second messenger ͉ synthesis
Adenosine
5′-diphosphoribose (ADPR) activates TRPM2, a Ca2+, Na+, and K+ permeable cation channel.
Activation is induced by ADPR binding to the cytosolic C-terminal
NudT9-homology domain. To generate the first structure–activity
relationship, systematically modified ADPR analogues were designed,
synthesized, and evaluated as antagonists using patch-clamp experiments
in HEK293 cells overexpressing human TRPM2. Compounds with a purine C8 substituent show antagonist activity, and an 8-phenyl
substitution (8-Ph-ADPR, 5) is very effective. Modification
of the terminal ribose results in a weak antagonist, whereas its removal
abolishes activity. An antagonist based upon a hybrid structure, 8-phenyl-2′-deoxy-ADPR
(86, IC50 = 3 μM), is more potent than
8-Ph-ADPR (5). Initial bioisosteric replacement of the
pyrophosphate linkage abolishes activity, but replacement of the pyrophosphate
and the terminal ribose by a sulfamate-based group leads to a weak
antagonist, a lead to more drug-like analogues. 8-Ph-ADPR (5) inhibits Ca2+ signalling and chemotaxis in human neutrophils,
illustrating the potential for pharmacological intervention at TRPM2.
Transient receptor potential melastatin 2 (TRPM2) is a ligand-gated Ca-permeable nonselective cation channel. Whereas physiological stimuli, such as chemotactic agents, evoke controlled Ca signals via TRPM2, pathophysiological stimuli such as reactive oxygen species and genotoxic stress result in prolonged TRPM2-mediated Ca entry and, consequently, apoptosis. To date, adenosine 5'-diphosphoribose (ADPR) has been assumed to be the main agonist for TRPM2. Here we show that 2'-deoxy-ADPR was a significantly better TRPM2 agonist, inducing 10.4-fold higher whole-cell currents at saturation. Mechanistically, this increased activity was caused by a decreased rate of inactivation and higher average open probability. Using high-performance liquid chromatography (HPLC) and mass spectrometry, we detected endogenous 2'-deoxy-ADPR in Jurkat T lymphocytes. Consistently, cytosolic nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) and nicotinamide adenine dinucleotide (NAD)-glycohydrolase CD38 sequentially catalyzed the synthesis of 2'-deoxy-ADPR from nicotinamide mononucleotide (NMN) and 2'-deoxy-ATP in vitro. Thus, 2'-deoxy-ADPR is an endogenous TRPM2 superagonist that may act as a cell signaling molecule.
TRPM2 (transient receptor potential channel, subfamily melastatin, member 2) is a Ca2+-permeable non-selective cation channel activated by the binding of adenosine 5′-diphosphoribose (ADPR) to its cytoplasmic NUDT9H domain (NUDT9 homology domain). Activation of TRPM2 by ADPR downstream of oxidative stress has been implicated in the pathogenesis of many human diseases, rendering TRPM2 an attractive novel target for pharmacological intervention. However, the structural basis underlying this activation is largely unknown. Since ADP (adenosine 5′-diphosphate) alone did not activate or antagonize the channel, we used a chemical biology approach employing synthetic analogues to focus on the role of the ADPR terminal ribose. All novel ADPR derivatives modified in the terminal ribose, including that with the seemingly minor change of methylating the anomeric-OH, abolished agonist activity at TRPM2. Antagonist activity improved as the terminal substituent increasingly resembled the natural ribose, indicating that gating by ADPR might require specific interactions between hydroxyl groups of the terminal ribose and the NUDT9H domain. By mutating amino acid residues of the NUDT9H domain, predicted by modelling and docking to interact with the terminal ribose, we demonstrate that abrogating hydrogen bonding of the amino acids Arg1433 and Tyr1349 interferes with activation of the channel by ADPR. Taken together, using the complementary experimental approaches of chemical modification of the ligand and site-directed mutagenesis of TRPM2, we demonstrate that channel activation critically depends on hydrogen bonding of Arg1433 and Tyr1349 with the terminal ribose. Our findings allow for a more rational design of novel TRPM2 antagonists that may ultimately lead to compounds of therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.