As part of our analysis of branched-chain amino acid metabolism in plants, we analyzed the function of Arabidopsis thaliana BRANCHED-CHAIN AMINOTRANSFERASE4 (BCAT4). Recombinant BCAT4 showed high efficiency with Met and its derivatives and the corresponding 2-oxo acids, suggesting its participation in the chain elongation pathway of Met-derived glucosinolate biosynthesis. This was substantiated by in vivo analysis of two BCAT4 T-DNA knockout mutants, in which Met-derived aliphatic glucosinolate accumulation is reduced by ;50%. The increase in free Met and S-methylmethionine levels in these mutants, together with in vitro substrate specificity, strongly implicate BCAT4 in catalysis of the initial deamination of Met to 4-methylthio-2-oxobutyrate. BCAT4 transcription is induced by wounding and is predominantly observed in the phloem. BCAT4 transcript accumulation also follows a diurnal rhythm, and green fluorescent protein tagging experiments and subcellular protein fractions show that BCAT4 is located in the cytosol. The assignment of BCAT4 to the Met chain elongation pathway documents the close evolutionary relationship of this pathway to Leu biosynthesis. In addition to BCAT4, the enzyme methylthioalkylmalate synthase 1 has been recruited for the Met chain elongation pathway from a gene family involved in Leu formation. This suggests that the two pathways have a common evolutionary origin.
(M.R., J.G.) In Arabidopsis thaliana, transamination steps in the leucine biosynthetic and catabolic pathways and the methionine (Met) chain elongation cycle of aliphatic glucosinolate formation are catalyzed by branched-chain aminotransferases (BCATs) that are encoded by a small gene family of six members. One member of this family, the plastid-located BCAT3, was shown to participate in both amino acid and glucosinolate metabolism. In vitro activity tests with the recombinant protein identified highest activities with the 2-oxo acids of leucine, isoleucine, and valine, but also revealed substantial conversion of intermediates of the Met chain elongation pathway. Metabolite profiling of bcat3-1 single and bcat3-1/bcat4-2 double knockout mutants showed significant alterations in the profiles of both amino acids and glucosinolates. The changes in glucosinolate proportions suggest that BCAT3 most likely catalyzes the terminal steps in the chain elongation process leading to short-chain glucosinolates: the conversion of 5-methylthiopentyl-2-oxo and 6-methylthiohexyl-2-oxo acids to their respective Met derivatives, homomethionine and dihomomethionine, respectively. The enzyme can also at least partially compensate for the loss of BCAT4, which catalyzes the initial step of Met chain elongation by converting Met to 4-methylthio-2-oxobutanoate. Our results show the interdependence of amino acid and glucosinolate metabolism and demonstrate that a single enzyme plays a role in both processes.
Valine, leucine and isoleucine contain short branched carbohydrate residues responsible for their classification as branched‐chain amino acids (BCAA). Among the proteinogenic amino acids, BCAA show the highest hydrophobicity and are accordingly the major constituents of transmembrane regions of membrane proteins. BCAA cannot be synthesized by humans and thus belong to the essential amino acids. In contrast, plants are able to synthesize these amino acids de novo and are an important source for these compounds in the human diet. However, BCAA cannot only be synthesized in plants, leucine and probably also valine and isoleucine can also be degraded. Many enzymes operating in turnover are found in mitochondria, while some catabolizing activities are located in peroxisomes. The breakdown of BCAA is physically separated from their biosynthesis in chloroplasts. Additionally, in the order of the Capparales, enzymes of the leucine metabolism seem to be evolutionary related to or may even participate in the methionine chain elongation pathway, the early part of the biosynthesis of aliphatic glucosinolates. In summary, in higher plants a complex network of pathways interferes with the homeostasis of Val, Leu and Ile.
The last steps of the Leu biosynthetic pathway and the Met chain elongation cycle for glucosinolate formation share identical reaction types suggesting a close evolutionary relationship of these pathways. Both pathways involve the condensation of acetyl-CoA and a 2-oxo acid, isomerization of the resulting 2-malate derivative to form a 3-malate derivative, the oxidation-decarboxylation of the 3-malate derivative to give an elongated 2-oxo acid, and transamination to generate the corresponding amino acid. We have now analyzed the genes encoding the isomerization reaction, the second step of this sequence, in Arabidopsis thaliana. One gene encodes the large subunit and three encode small subunits of this enzyme, referred to as isopropylmalate isomerase (IPMI) with respect to the Leu pathway. Metabolic profiling of large subunit mutants revealed accumulation of intermediates of both Leu biosynthesis and Met chain elongation, and an altered composition of aliphatic glucosinolates demonstrating the function of this gene in both pathways. In contrast, the small subunits appear to be specialized to either Leu biosynthesis or Met chain elongation. Green fluorescent protein tagging experiments confirms the import of one of the IPMI small subunits into the chloroplast, the localization of the Met chain elongation pathway in these organelles. These results suggest the presence of different heterodimeric IPMIs in Arabidopsis chloroplasts with distinct substrate specificities for Leu or glucosinolate metabolism determined by the nature of the different small subunit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.