The development and evolution of an advanced modeling environment for a Domain-Specific Modeling Language (DSML) is a tedious task, which becomes recurrent with the increasing number of DSMLs involved in the development and management of complex software-intensive systems. Recent efforts in language workbenches result in advanced frameworks that automatically provide syntactic tooling such as advanced editors. However, defining the execution semantics of languages and their tooling remains mostly hand crafted. Similarly to editors that share code completion or syntax highlighting, the development of advanced debuggers, animators, and others execution analysis tools shares common facilities, which should be reused among various DSMLs. In this tool demonstration paper, we present the execution framework offered by the GEMOC studio, an Eclipse-based language and modeling workbench. The framework provides a generic interface to plug in different execution engines associated to their specific metalanguages used to define the discrete-event operational semantics of DSMLs. It also integrates generic runtime services that are shared among the approaches used to implement the execution semantics, such as graphical animation or omniscient debugging.
When defining a domain-specific modeling language (DSML), the two key components that have to be specified are its syntax and semantics. For specifying a modeling languages' abstract syntax, metamodels are the standard means. MOF provides a standardized, well established, and widely accepted metamodeling language enabling the definition of metamodels and the generation of accompanying modeling facilities. However, no such standard means exist for specifying the behavioral semantics of a DSML. This hampers the efficient development of model execution facilities, such as debugging, simulation, and verification. To overcome this limitation, we propose to integrate fUML with MOF to enable the specification of the behavioral semantics for DSMLs in terms of fUML activities. We discuss alternatives how this integration can be achieved and show by-example how to specify the semantics of a DSML using fUML. To reuse existing runtime infrastructures, we further demonstrate the usage of external libraries in fUML-based specifications.
International audienceExecutable Domain-Specific Modeling Languages (xDSMLs) enable the application of early dynamic verification and validation (V&V) techniques for behavioral models. At the core of such techniques, execution traces are used to represent the evolution of models during their execution. In order to construct execution traces for any xDSML, generic trace metamodels can be used. Yet, regarding trace manipulations, generic trace metamodels lack efficiency in time because of their sequential structure, efficiency in memory because they capture superfluous data, and usability because of their conceptual gap with the considered xDSML. Our contribution is a novel generative approach that defines a multidimensional and domain-specific trace metamodel enabling the construction and manipulation of execution traces for models conforming to a given xDSML. Efficiency in time is improved by providing a variety of navigation paths within traces, while usability and memory are improved by narrowing the scope of trace metamodels to fit the considered xDSML. We evaluated our approach by generating a trace metamodel for fUML and using it for semantic differencing, which is an important V&V technique in the realm of model evolution. Results show a significant performance improvement and simplification of the semantic differencing rules as compared to the usage of a generic trace metamodel
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.