Affinity maturation is often applied to improve the properties of antibodies isolated from universal antibody libraries in vitro. A synthetic human scFv antibody library was constructed in single immunoglobulin framework to enable rapid affinity maturation by updated Kunkel's mutagenesis. The initial diversity was generated predominantly in the V(H) domain combined with only 36 V(L) domain variants yielding 3 × 10(10) unique members in the phage-displayed library. After three rounds of panning the enriched V(H) genes from the primary library selections against lysozyme were incorporated into a ready-made circular single-stranded affinity maturation library containing 7 × 10(8) V(L) gene variants. Several unique antibodies with 0.8-10 nM (K(d), dissociation constant) affinities against lysozyme were found after panning from the affinity maturation library, contrasted by only one anti-lysozyme scFv clone with K(d) <20 nM among the clones panned from the primary universal library. The presented single-framework strategy provides a way to convey significant amount of functional V(H) domain diversity to affinity maturation without bimolecular ligation leading to a diverse set of antibodies with binding affinities in the low nanomolar range.
BACKGROUND: Autoantibodies to cardiac troponins (cTnAAb) can interfere with the measurement of cardiac troponin I (cTnI) by immunoassays. The aim of this study was to explore the degree of cTnAAb interference in different cTnI assay configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.