This study validates automated emotion and action unit (AU) coding applying FaceReader 7 to a dataset of standardized facial expressions of six basic emotions (Standardized and Motivated Facial Expressions of Emotion). Percentages of correctly and falsely classified expressions are reported. The validity of coding AUs is provided by correlations between the automated analysis and manual Facial Action Coding System (FACS) scoring for 20 AUs. On average 80% of the emotional facial expressions are correctly classified. The overall validity of coding AUs is moderate with the highest validity indicators for AUs 1, 5, 9, 17 and 27. These results are compared to the performance of FaceReader 6 in previous research, with our results yielding comparable validity coefficients. Practical implications and limitations of the automated method are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.