Purpose
Surface guided radiotherapy (SGRT) is reported as a feasible setup technique for whole‐breast radiotherapy in deep inspiration breath hold (DIBH), but position errors of bony structures related to deeper parts of the target are not fully known. The aim of this study was to estimate patient setup accuracy and margins obtained with two different SGRT workflows with and without daily kV‐ and/or MV‐based image guidance (IGRT).
Methods
A total of 50 breast cancer patients were treated in DIBH, using SGRT for the patient setup, and IGRT for isocenter corrections. The patients were treated at two different departments, one using AlignRT® (25 patients) and the other using Catalyst™ (25 patients). Inter‐fractional position errors were analyzed retrospectively in orthogonal and tangential setup images, and analyzed with and without IGRT.
Results
In the orthogonal kV‐kV images, the systematic residual errors of the bony structures were ≤ 3 mm in both groups with SGRT‐only. When fine‐adjusted by daily IGRT, the errors decreased to ≤ 2 mm; except for the shoulder joint. The residual errors of the ribs in tangential images were between 1 and 2 mm with both workflows. The heart planning margins were between 3 and 7 mm.
Conclusions
The frequency of IGRT may be considerably reduced with a well‐planned SGRT‐workflow for whole‐breast DIBH with residual errors ≤ 3 mm. This accuracy can be further improved with an IGRT scheme.
BackgroundAdjuvant radiotherapy (RT) for left-sided breast cancer increases cardiac morbidity and mortality. For the heart, no safe radiation threshold has been established. Troponin T is a sensitive marker of myocardial damage. Our aim was to evaluate the effect of left-sided breast cancer RT on serum high sensitivity troponin T (hscTnT) levels and its association with cardiac radiation doses and echocardiographic parameters.MethodsA total of 58 patients with an early stage, left-sided breast cancer or ductal carcinoma in situ (DCIS) who received adjuvant breast RT without prior chemotherapy were included in this prospective, non-randomized study. Serum samples were taken before, during and after RT. An increase of hscTnT >30 % was predefined as significant. A comprehensive 2D echocardiograph and electrocardiogram (ECG) were performed before and after RT. Dose-volume histograms (DVHs) were generated for different cardiac structures.ResultsThe hscTnT increased during RT from baseline in 12/58 patients (21 %). Patients with increased hscTnT values (group A, N = 12) had significantly higher radiation doses for the whole heart (p = 0.02) and left ventricle (p = 0.03) than patients without hscTnT increase (group B, N = 46). For the left anterior descending artery (LAD), differences between groups A and B were found in volumes receiving 15 Gy (p = 0.03) and 20 Gy (p = 0.03) Furthermore, after RT, the interventricular septum thickened (p = 0.01), and the deceleration time was prolonged (p = 0.008) more in group A than in group B.ConclusionsThe increase in hscTnT level during adjuvant RT was positively associated with the cardiac radiation doses for the whole heart and LV in chemotherapy-naive breast cancer patients. Whether these acute subclinical changes increase the risk of excessive long-term cardiovascular morbidity or mortality, will be addressed in the follow-up of our patients.
Radiotherapy (RT) to the thoracic region increases late cardiovascular morbidity and mortality. The impact of breast cancer laterality on cardiac function is largely unknown. The aim of this prospective study was to compare RT-induced changes in left-sided and right-sided breast cancer patients using speckle tracking echocardiography (STE). Sixty eligible patients with left-sided breast cancer and 20 with right-sided breast cancer without chemotherapy were evaluated prospectively before and early after RT. A comprehensive echocardiographic examination included three dimensional measurements and STE of the left ventricle (LV). The global longitudinal strain (GLS) was reduced from -18.3 ± 3.1 to -17.2 ± 3.3% (p = 0.003) after RT in patients with left-sided breast cancer. Similarly, regional analysis showed a reduction in the apical strain from -18.7 ± 5.3 to -16.7 ± 4.9% (p = 0.002) and an increase in basal values from -21.6 ± 5.0 to -23.3 ± 4.9% (p = 0.024). Patients with right-sided breast cancer showed deterioration in basal anterior strain segments from -26.3 ± 7.6 to -18.8 ± 8.9% (p < 0.001) and in pulsed tissue Doppler by 0.825 [0.365, 1.710] cm/s (p < 0.001). In multivariable analysis, the use of aromatase inhibitor (β = -2.002, p = 0.001) and decreased LV diastolic volume (β = -0.070, p = 0.025) were independently associated with the decrease in GLS. RT caused no changes in conventional LV systolic measurements. RT induced regional changes corresponded to the RT fields. Patients with left-sided breast cancer experienced apical impact and global decline, whereas patients with right-sided breast cancer showed basal changes. The regional differences in cardiac impact warrant different methods in screening and in the follow-up of patients with left-sided versus right-sided breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.