We developed LiSiCA (ligand similarity using clique algorithm)--ligand-based virtual screening software that uses a fast maximum clique algorithm to find two- and three-dimensional similarities between pairs of molecules and applied it to the discovery of novel potent butyrylcholinesterase inhibitors. LiSiCA, which runs in parallel on multiple processor cores, was successfully tested on the Database of Useful Decoys-Enhanced, to evaluate its ability to discriminate active molecules from decoys. We then applied LiSiCA for the discovery of novel inhibitors of human butyrylcholinesterase, a promising anti-Alzheimer target, using a known inhibitor as the reference compound. We demonstrated that LiSiCA is capable of finding potent nanomolar inhibitors, whose scaffolds differed from the reference compound, thus proving its ability for scaffold hopping and usefulness in drug discovery.
Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.
Drug discovery is usually focused on a single protein target; in this process, existing compounds that bind to related proteins are often ignored. We describe ProBiS plugin, extension of our earlier ProBiS-ligands approach, which for a given protein structure allows prediction of its binding sites and, for each binding site, the ligands from similar binding sites in the Protein Data Bank. We developed a new database of precalculated binding site comparisons of about 290000 proteins to allow fast prediction of binding sites in existing proteins. The plugin enables advanced viewing of predicted binding sites, ligands’ poses, and their interactions in three-dimensional graphics. Using the InhA query protein, an enoyl reductase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possible ligands and assessed their inhibitory activity experimentally. This resulted in three previously unrecognized inhibitors with novel scaffolds, demonstrating the plugin’s utility in the early drug discovery process.
Ligand-based virtual screening of large small-molecule databases is an important step in the early stages of drug development. It is based on the similarity principle and is used to reduce the chemical space of large databases to a manageable size where chosen ligands can be experimentally tested. Ligand-based virtual screening can also be used to identify bioactive molecules with different basic scaffolds compared to already known bioactive molecules, thus having the potential to increase the structural variability of compounds. Here, we present an interface between the popular molecular graphics system PyMOL and the ligand-based virtual screening software LiSiCA available at http://insilab.org/lisica-plugin and demonstrate how this interface can be used in the early stages of drug discovery process.Graphical AbstractLigand-based virtual screening interface between PyMOL and LiSiCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.