Our study showed a quantitative influence of Dotarem and Gadovist on sodium relaxation times. However, quantification of TSC was not impaired, which was proven by worst case calculations and nonsignificant differences in vivo in an ischemic stroke patient. We suggest performing sodium imaging in useful clinical positions in protocols regardless of included Dotarem or Gadovist administrations. Being flexible in the study protocol design will strengthen ongoing sodium imaging investigations for various pathologies.
Measurement of the blood T1 time using conventional myocardial T1 mapping methods has gained clinical significance in the context of extracellular volume (ECV) mapping and synthetic hematocrit (Hct). However, its accuracy is potentially compromised by in-flow of non-inverted/non-saturated spins and in-flow of spins which are not partially saturated from previous imaging pulses. Bloch simulations were used to analyze various flow effects separately. T1 measurements of gadolinium doped water were performed using a flow phantom with adjustable flow velocities at 3 T. Additionally, in vivo blood T1 measurements were performed in 6 healthy subjects (26 ± 5 years, 2 female). To study the T1 time as a function of the instantaneous flow velocity, T1 times were evaluated in an axial imaging slice of the descending aorta. Velocity encoded cine measurements were performed to quantify the flow velocity throughout the cardiac cycle. Simulation results show more than 30% loss in accuracy for 10% non-prepared in-flowing spins. However, in- and out-flow to the imaging plane only demonstrated minor impact on the T1 time. Phantom T1 times were decreased by up to 200 ms in the flow phantom, due to in-flow of non-prepared spins. High flow velocities cause in-flow of spins that lack partial saturation from the imaging pulses but only lead to negligible T1 time deviation (less than 30 ms). In vivo measurements confirm a substantial variation of the T1 time depending on the flow velocity. The highest aortic T1 times are observed at the time point of minimal flow with increased flow velocity leading to reduction of the measured T1 time by up to at peak velocity. In this work we attempt to dissect the effects of flow on T1 times, by using simulations, well-controlled, simplified phantom setup and the linear flow pattern in the descending aorta in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.