This paper investigates the role of outliers in literature-based knowledge discovery. It shows that detecting interesting outliers which appear in the literature on a given phenomenon can help the expert to find implicit relationships among concepts of different domains. The underlying assumption is that while the majority of articles in the given scientific domain describe matters related to a common understanding of the domain, the exploration of outliers may lead to the detection of scientifically interesting bridging concepts among disjoint sets of scientific articles. The proposed approach contributes to cross-context link discovery by proving the utility of outlier detection for finding bisociative links in the process of autism literature exploration, as well as by uncovering implicit relationships in the articles from the migraine domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.