The hazards of many plastic additives on human and environmental health are well documented. However, little emphasis has been put on plastic additives that are persistent, mobile, and toxic (PMT)...
<p>The hazards of many plastic additives on human and environmental health are well documented. However, little emphasis has been put on plastic additives that are persistent, mobile, and toxic (PMT) rather than persistent, bioaccumulative, and toxic. Due to their high mobility and stability, it is unlikely that wastewater treatment plants will effectively remove PMT plastic additives. Herein, an <em>in silico</em> analysis was performed to (1) assess the retention of PMT plastic additives registered for use in Canada in wastewater treatment plants; and (2) determine whether their physical–chemical properties and structural features can be used as identifiers for PMT plastic additives with particularly low retention. We identified 124 PMT plastic additives of which 52% had less than 20% removal from wastewater treatment based on predictions using the model SimpleTreat. Log <em>K</em>aw, log <em>K</em>ow/<em>D</em>ow, and log <em>K</em>oc/<em>D</em>oc ranges were defined that are indicative of low retention PMT plastic additives. Furthermore, it was found that non-halogenated PMT plastic additives that contain nitrogen are most likely to be poorly retained in wastewater treatment plants. The results of this study provide screening and prioritization criteria, as well as a suspect list for PMT plastic additives.</p>
<p>The hazards of many plastic additives on human and environmental health are well documented. However, little emphasis has been put on plastic additives that are persistent, mobile, and toxic (PMT) rather than persistent, bioaccumulative, and toxic. Due to their high mobility and stability, it is unlikely that wastewater treatment plants will effectively remove PMT plastic additives. Herein, an <em>in silico</em> analysis was performed to (1) assess the retention of PMT plastic additives registered for use in Canada in wastewater treatment plants; and (2) determine whether their physical–chemical properties and structural features can be used as identifiers for PMT plastic additives with particularly low retention. We identified 124 PMT plastic additives of which 52% had less than 20% removal from wastewater treatment based on predictions using the model SimpleTreat. Log <em>K</em>aw, log <em>K</em>ow/<em>D</em>ow, and log <em>K</em>oc/<em>D</em>oc ranges were defined that are indicative of low retention PMT plastic additives. Furthermore, it was found that non-halogenated PMT plastic additives that contain nitrogen are most likely to be poorly retained in wastewater treatment plants. The results of this study provide screening and prioritization criteria, as well as a suspect list for PMT plastic additives.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.