We have studied the spin-orbit torques in perpendicularly magnetized Hf/CoFeB/MgO system, by systematically varying the thickness of Hf underlayer. We have observed a sign change of effective fields between Hf thicknesses of 1.75 and 2 nm, indicating that competing mechanisms, such as the Rashba and spin Hall effects, contribute to spin-orbit torques in our system. For larger Hf thicknesses (>2 nm), both the components of spin-orbit torques arise predominantly from the bulk spin Hall effect. We have also confirmed these results using spin-orbit torque induced magnetization switching measurements. Our results could be helpful in designing Hf based SOT devices.
The three-dimensional structure of nanoscale topological spin textures stabilized by the Dzyaloshinskii-Moriya interaction is governed by the delicate competition between the exchange, demagnetization, and anisotropy energies. The quantification of such spin textures through direct experimental methods is crucial towards understanding the fundamental physics associated with their ordering, as well as their manipulation in spintronic devices. Here, we extend the Lorentz transmission electron microscopy technique to quantify mixed Bloch-Néel chiral spin textures stabilized by the Dzyaloshinskii-Moriya interaction in Co=Pd multilayers. Analysis of the observed intensities under varied imaging conditions coupled to corroborative micromagnetic simulations yields vital parameters that dictate the stability and properties of the complex spin texture, namely, the degree of mixed Bloch-Néel character, the domain wall width, the strength of the Dzyaloshinskii-Moriya interaction, and the exchange stiffness. This approach provides the necessary framework for the application of quantitative Lorentz phase microscopy to a broad array of topological spin systems.
Nanostructures of metal sulfides are conventionally prepared via chemical techniques and patterned using self-assembly. This poses a considerable amount of challenge when arbitrary shapes and sizes of nanostructures are desired to be placed at precise locations. Here, we describe an alternative approach of nanoscale patterning of zinc sulfide (ZnS) directly using a spin-coatable and electron beam sensitive zinc butylxanthate resist without the lift-off or etching step. Time-resolved electron beam damage studies using micro-Raman and micro-FTIR spectroscopies suggest that exposure to a beam of electrons leads to quick disappearance of xanthate moieties most likely via the Chugaev elimination, and further increase of electron dose results in the appearance of ZnS, thereby making the exposed resist insoluble in organic solvents. Formation of ZnS nanocrystals was confirmed by high-resolution transmission electron microscopy and selected area electron diffraction. This property was exploited for the fabrication of ZnS lines as small as 6 nm and also enabled patterning of 10 nm dots with pitches as close as 22 nm. The ZnS patterns fabricated by this technique showed defect-induced photoluminescence related to sub-band-gap optical transitions. This method offers an easy way to generate an ensemble of functional ZnS nanostructures that can be arbitrarily patterned and placed in a precise way. Such an approach may enable programmable design of functional chalcogenide nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.