Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Cephalometric analysis is divided in two categories, manual and automatic approaches. The manual approach is limited in accuracy and repeatability due to differences in inter- and intra-personal marking. In this paper, we have attempted to develop and test a novel method for automatic localization of craniofacial structures based on the detected edges in the region of interest. Before edge detection of the particular region, the region was filtered by adaptive non local filter for noise removal by keeping the edge information undisturbed. According to the gray-scale feature at the different regions of the cephalograms, modified Canny edge detection algorithm for obtaining tissue contour was proposed. With the application of morphological opening and edge linking approaches, an improved bidirectional contour tracing methodology was proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.