Despite performing certain morphological assessments for selecting the best embryo for transfer, the results have not been satisfactory. Given the global tendency for performing quick and noninvasive tests for embryo selection, great efforts have been made to discover the predictive biomarkers of embryo implantation potential. In recent years, many factors have been detected in embryo culture media as a major source of embryo secretions. Previous studies have evaluated cytokines, miRNAs, extracellular vesicles, and other factors such as leukemia inhibitory factor, colony‐stimulating factor, reactive oxygen species, soluble human leukocyte antigen G, amino acids, and apolipoproteins in these media. Given the key role of cytokines in embryo implantation, these factors can be considered promising molecules for predicting the implantation success of assisted reproductive technology (ART). The present study was conducted to review embryo‐secreted molecules as potential biomarkers for embryo selection in ART.
The formation of atherosclerotic changes leads to dysfunction in numerous cell types, especially endothelial cells. In the current experiment, we aimed to show the therapeutic effect of Docosahexaenoic acid on palmitic-induced atherosclerotic changes in the human endothelial lineage. Human Umbilical Vein Endothelial cells were incubated with 1 mM palmitic acid for 48 hours and then exposed to 40 µM docosahexaenoic acid for next 24 hours. Cellular atherosclerosis and lipid removal were confirmed by the application of Oil red O solution. The cell survival rate was studied by using MTT assay and flow cytometry analysis of Annexin V. We also measured the protein level of tumor necrosis factor-α and granulocyte-macrophage colony-stimulating factor by immunofluorescence imaging. The transcription level of genes participating in the atherosclerosis signaling pathway was monitored in atherosclerotic endothelial cells before and after treatment with docosahexaenoic acid. The viability of the cells was reduced after 48 hours incubation with palmitic acid. It is noteworthy that the number of viable endothelial cells was increased after exposure to docosahexaenoic acid. Compared with the cells that received palmitic acid, Oil red O staining showed a decrease in the cellular content of fatty acid after incubation with docosahexaenoic acid (P < 0.05). PCR array indicated that the modulation of key genes played a role in atherosclerosis and reached near-control levels. These data support the notion that incubation of atherosclerotic human endothelial cells with docosahexaenoic acid could return the detrimental effects of palmitic acid by modulation of the atherosclerosis signaling pathway.
Acute myeloid leukemia (AML) is the most common subtype of leukemia, accounting for 62% of all leukemia fatalities. As a polyphenol glycoside, hesperidin triggers the apoptotic pathway, which might positively affect combating cancer cells. In this study, we investigated the pro-apoptotic effects of hesperidin in KG1a cells. The MTT assay was used to determine the IC50 of hesperidin in KG1a cell lines. For the apoptotic cell morphology study, we used Hoechst 33 258 staining. Activation of the caspase-3 enzyme was evaluated by the caspase-3 assay and spectrophotometry. Cell cycle distribution was analyzed by propidium iodide staining and flow cytometry. Moreover, p21, survivin, Bax, and Bcl2 gene expression was investigated by real-time PCR. Hesperidin decreased the viability of KG1a leukemic cell4s, but not that of HFF2, a non-cancer cell line. Apoptotic cell morphological alterations and increase in caspase-3 activity were observed after hesperidin treatment. Our results revealed that the expression of anti-apoptotic genes survivin and Bcl2 significantly decreased with hesperidin treatment, and pro-apoptotic gene Bax and cell cycle regulator p21 increased compared to the control group. These findings revealed that hesperidin may be an effective factor in initiating the intrinsic pathway of apoptosis and may be good candidate for the treatment of AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.