Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces.droplet fragmentation | X-ray computed microtomography | pore-scale imaging | heterogeneous porous media | carbonate rock M ultiphase fluid displacement processes in porous media are important for a broad range of natural and engineering applications such as transport of nonaqueous phase liquid contaminants in aquifers, oil and gas production from hydrocarbon reservoirs, subsurface CO 2 storage, or gas transport in fuel cells. Herein, capillary trapping is a fundamental mechanism that causes immobilization of a portion of the resident nonwetting phase when it is displaced by an invading wetting phase. As a result, production of the nonwetting phase is always less than 100%.The pore-scale physics of capillary trapping are broadly understood, as the underlying mechanisms such as piston-like displacement, snap-off and film development have been observed in physical micromodel experiments and quantitative theories have been established for them (1-4). The conventional view considers such pore-scale processes to occur between multiple pores, i.e., they are interpore processes and the pores are defined as volumes connected by narrower pore throats. By contrast, intrapore processes, as presented in this paper, are not well established in the literature. During drainage (i.e., where a nonwetting phase displaces the wetting phase), the wetting phase can establish films in the corners of the pores, which results in its continuous production and hence low residual saturations of the wetting phase. During imbibition (i.e., where the wetting phase displaces a nonwetting phase), swelling of the corner wetting films causes snap-off of the nonwetting phase, which results in capillary trapping of the nonwetting phase. The trapped nonwetting phase exists as disconnected ganglia within the pore network. Numerical pore network models have been developed to include these porelevel mechanisms with the aim of predicting the macroscopic flow properties of porous materials such as the structure of the phase distributions, residual saturation, relative permeability functions, and capillary pressure curves. Some of these mod...
Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.
This work provides new insights into the dynamics of silica nanoparticle-based removal of organic fluids (here oil) from naturally occurring porous media. We have used 4D (time-resolved 3D) imaging at pore-scale using X-ray computed micro-tomography (μCT) technique. The captured 3D tomographic time-series data reveal the dynamics of immiscible oil displacement from a carbonate rock upon injection of nanoparticle (NP) suspensions (0.06 and 0.12 wt% SiO2 in deionised water). Our analysis shows significant pore-scale remobilisation of initially trapped oil upon injection of the NP suspensions, specifically, at higher concentration. Our data shows that oil clusters become significantly smaller with larger fluid/fluid interface as a result of the higher concentration NP injection. This paper demonstrates that use of 2D radiograms collected during fluid injections allows monitoring flow dynamics at time resolutions down to a few seconds using conventional laboratory-based μCT scanners. Here, as an underlying mechanism for oil remobilisation, we present the first 4D evidence of in-situ formation of an oil in water emulsion induced by nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.