Background & Aims Mutational inactivation of APC is an early event in colorectal cancer (CRC) progression that affects the stability and increases the activity of β-catenin, a mediator of Wnt signaling. CRC progression also involves inactivation of signaling via transforming growth factor (TGF)β and bone morphenogenic protein (BMP), which are tumor suppressors. However, the interactions between these pathways are not clear. We investigated the effects of loss of the transcription factor Smad4 loss on levels of β-catenin mRNA and Wnt signaling. Methods We used microarray analysis to associate levels of Smad4 and β-catenin mRNA in colorectal tumor samples from 250 patients. We performed oligonucleotide-mediated knockdown of Smad4 in human embryonic kidney (HEK293T) and in HCT116 colon cancer cells and transgenically expressed Smad4 in SW480 colon cancer cells. We analyzed adenomas from (APCΔ1638/+) and (APCΔ1638/+)x(K19CreERT2Smad4lox/lox) mice using laser-capture microdissection. Results In human CRC samples, reduced levels of Smad4 correlated with increased levels of β-catenin mRNA. In Smad4-depleted cell lines, levels of β-catenin mRNA and Wnt signaling increased. Inhibition of BMP or depletion of Smad4 in HEK293T cells increased binding of RNA polymerase II to the β-catenin gene. Expression of Smad4 in SW480 cells reduced Wnt signaling and levels of β-catenin mRNA. In mice with heterozygous disruption of Apc(APCΔ1638/+), Smad4-deficient intestinal adenomas had increased levels of β-catenin mRNA and expression of Wnt target genes, compared with adenomas from APCΔ1638/+mice that expressed Smad4. Conclusions Transcription of β-catenin is inhibited by BMP signaling to Smad4. These findings provide important information about the interaction among TGF-β, BMP, and Wnt signaling pathways in CRC progression.
SUMMARY A key event in Wnt signaling is conversion of TCF/Lef from a transcriptional repressor to an activator, yet how this switch occurs is not well understood. Here, we report an unanticipated role for X-linked Inhibitor of Apoptosis (XIAP) in regulating this critical Wnt signaling event that is independent of its anti-apoptotic function. We identified DIAP1 as a positive regulator of Wingless signaling in a Drosophila S2 cell-based RNAi screen. XIAP, its vertebrate homolog, is similarly required for Wnt signaling in cultured mammalian cells and in Xenopus embryos, indicating evolutionary conservation of function. Upon Wnt pathway activation, XIAP is recruited to TCF/Lef where it mono-ubiquitylates Groucho(Gro)/TLE. This modification decreases affinity of Gro/TLE for TCF/Lef. Our data reveal a transcriptional switch involving XIAP-mediated ubiquitylation of Gro/TLE that facilitates its removal from TCF/Lef, thus allowing β-catenin-TCF/Lef complex assembly and initiation of a Wnt-specific transcriptional program.
Background & AimsChronic inflammation is a predisposing condition for colorectal cancer. Many studies to date have focused on proinflammatory signaling pathways in the colon. Understanding the mechanisms that suppress inflammation, particularly in epithelial cells, is critical for developing therapeutic interventions. Here, we explored the roles of transforming growth factor β (TGFβ) family signaling through SMAD4 in colonic epithelial cells.MethodsThe Smad4 gene was deleted specifically in adult murine intestinal epithelium. Colitis was induced by 3 rounds of dextran sodium sulfate in drinking water, after which mice were observed for up to 3 months. Nontransformed mouse colonocyte cell lines and colonoid cultures and human colorectal cancer cell lines were analyzed for responses to TGFβ1 and bone morphogenetic protein 2.ResultsDextran sodium sulfate treatment was sufficient to drive carcinogenesis in mice lacking colonic Smad4 expression, with resulting tumors bearing striking resemblance to human colitis–associated carcinoma. Loss of SMAD4 protein was observed in 48% of human colitis–associated carcinoma samples as compared with 19% of sporadic colorectal carcinomas. Loss of Smad4 increased the expression of inflammatory mediators within nontransformed mouse colon epithelial cells in vivo. In vitro analysis of mouse and human colonic epithelial cell lines and organoids indicated that much of this regulation was cell autonomous. Furthermore, TGFβ signaling inhibited the epithelial inflammatory response to proinflammatory cytokines.ConclusionsTGFβ suppresses the expression of proinflammatory genes in the colon epithelium, and loss of its downstream mediator, SMAD4, is sufficient to initiate inflammation-driven colon cancer. Transcript profiling: GSE100082.
Molecular biomarkers of cancer are needed to assist histological staging in the selection of treatment, outcome risk stratification, and patient prognosis. This is particularly important for patients with early-stage disease. We demonstrate that shedding of the extracellular domain of ALCAM (Activated Leukocyte Cell Adhesion Molecule) is prognostic for outcome in patients with colorectal cancer (CRC). Previous reports on the prognostic value of ALCAM expression in CRC have been contradictory and inconclusive. This study clarifies the prognostic value of ALCAM by visualizing ectodomain shedding using a dual stain that detects both the extracellular and the intracellular domains in formalin-fixed tissue. Using this novel assay, 105 primary colorectal cancers patients and 12 normal mucosa samples were evaluated. ALCAM shedding, defined as detection of the intracellular domain in the absence of the corresponding extracellular domain, was significantly elevated in CRC patients and correlated with reduced survival. Conversely, retention of intact ALCAM was associated with improved survival, thereby confirming that ALCAM shedding is associated with poor patient outcome. Importantly, analysis of stage II CRC patients demonstrated that disease-specific survival is significantly reduced for patients with elevated ALCAM shedding (p=0.01, HR 3.0) suggesting that ALCAM shedding can identify patients with early stage disease at risk of rapid progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.