BackgroundProper phosphate signaling is essential for robust growth of Escherichia coli and many other bacteria. The phosphate signal is mediated by a classic two component signal system composed of PhoR and PhoB. The PhoR histidine kinase is responsible for phosphorylating/dephosphorylating the response regulator, PhoB, which controls the expression of genes that aid growth in low phosphate conditions. The mechanism by which PhoR receives a signal of environmental phosphate levels has remained elusive. A transporter complex composed of the PstS, PstC, PstA, and PstB proteins as well as a negative regulator, PhoU, have been implicated in signaling environmental phosphate to PhoR.ResultsThis work confirms that PhoU and the PstSCAB complex are necessary for proper signaling of high environmental phosphate. Also, we identify residues important in PhoU/PhoR interaction with genetic analysis. Using protein modeling and docking methods, we show an interaction model that points to a potential mechanism for PhoU mediated signaling to PhoR to modify its activity. This model is tested with direct coupling analysis.ConclusionsThese bioinformatics tools, in combination with genetic and biochemical analysis, help to identify and test a model for phosphate signaling and may be applicable to several other systems.
in a gelatin capsule that dissolves in the stomach. The pancreatin in the released microspheres is protected from acid/pepsin digestion by a pH sensitive coat that does not dissolve until the pH exceeds roughly 5-5. Thus the granules mix with the gastric contents and enzymes are not released until the pH of the chyme exceeds 5-5 within the duodenum. In this study we compared the efficacy of Pancrex V Forte tablets (Paines and Byrne) with three microsphere systems-namely, Pancrease (Ortho-Cilag), Creon (Duphar), and a new pancreatin product, Pancreatin Merck (Merck Pharmaceuticals) (Table). Patients and methodsPatients. Nineteen patients who were currently receiving treatment at our unit were enrolled in the study. Their median age was 12 years 1 month, with a range of 6 years 2 months to 20 years 1 month, and their most recent Shwachman clinical scores and Chrispin Norman x ray scores were 80 (60-95) and 6 (0-21), respectively. All children had symptoms of cystic fibrosis and all had had at least two raised sweat sodium and chloride concentrations. At the time of entry into the trial all patients were on an unrestricted normal diet that contained a median of 3-14 (1-38-4-48) g of fat/kg/day and were receiving as their pancreatic supplement a median of 18 (6-40) capsules of Pancrease each day.
Oxidative stress plays a key role in obesity by modifying the function of important biological molecules, thus altering obesogenic pathways such as glucose and lipid signaling. Catalase, is an important endogenous antioxidant enzyme that catabolizes hydrogen peroxide produced by the dismutation of superoxide. Recent studies have shown knockdown of catalase exacerbates insulin resistance and leads to obesity. We hypothesized that overexpressing catalase in an obese mouse will modulate obesogenic pathways and protect against obesity. Therefore, we bred catalase transgenic ([Tg(CAT)+/−] mice with Ob/Ob mice to generate the hybrid “Bob-Cat” mice. This newly generated “stress-less” mouse model had decreased oxidative stress (oxidized carbonylated proteins). ECHO-MRI showed lower fat mass but higher lean mass in “Bob-Cat” mice. Comprehensive Lab Animal Monitoring System (CLAMS) showed light and dark cycle increase in energy expenditure in Bob-Cat mice compared to wild type controls. Circulating levels of leptin and resistin showed no change. Catalase mRNA expression was increased in key metabolic tissues (adipose, liver, intestinal mucosa, and brain) of the Bob-Cat mouse. Catalase activity, mRNA and protein expression was increased in adipose tissue. Expression of the major adipokines leptin and adiponectin was increased while pro-inflammatory genes, MCP-1/JE and IL-1β were lowered. Interestingly, sexual dimorphism was seen in body composition, energy expenditure, and metabolic parameters in the Bob-Cat mice. Overall, the characteristics of the newly generated “Bob-Cat” mice make it an ideal model for studying the effect of redox modulators (diet/exercise) in obesity.
The global stress response controlled by the alternative sigma factor RpoS protects enteric bacteria from a variety of environmental stressors. The role of RpoS in other, nonenteric bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, is less well understood. Here, we employed experimental social evolution to reveal that cooperative behavior via secreted public goods is an important function in the RpoS response of P. aeruginosa. Using whole-genome sequencing, we identified rpoS loss-of-function mutants among isolates evolved in a protein growth medium that requires extracellular proteolysis. We found that rpoS mutants comprise up to 25% of the evolved population and that they behave as social cheaters, with low fitness in isolation but high fitness in mixed culture with the cooperating wild type. We conclude that rpoS mutants cheat because they exploit an RpoS-controlled public good produced by the wild type, the secreted aminopeptidase PaAP, and because they do not carry the metabolic costs of expressing PaAP and many other gene products in the large RpoS regulon. Our results suggest that PaAP is an integral part of a proteolytic sequence in P. aeruginosa that permits the utilization of protein as a nutrient source. Our work broadens the scope of stress response functions in bacteria. IMPORTANCE Bacterial stress responses are generally considered protective measures taken by individual cells. Enabled by an experimental evolution approach, we describe a contrasting property, collective nutrient acquisition, in the RpoS-dependent stress response of the opportunistic human pathogen P. aeruginosa. Specifically, we identify the secreted P. aeruginosa aminopeptidase (PaAP) as an essential RpoS-controlled function in extracellular proteolysis. As a secreted “public good,” PaAP permits cheating by rpoS mutants that save the metabolic costs of expressing RpoS-controlled genes dispensable under the given growth conditions. Proteolytic enzymes are important virulence factors in P. aeruginosa pathogenesis and constitute a potential target for antimicrobial therapy. More broadly, our work contributes to recent findings in higher organisms that stress affects not only individual fitness and competitiveness but also cooperative behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.