Course-based undergraduate research experiences (CUREs) are high-impact practices that allow students to conduct research during class time. Benefits of a CURE can be maximized when integrated into a faculty member’s ongoing research. However, this can be particularly challenging for field biologists, especially when field sites are not situated near their university. Indeed, few existing CUREs are field based. One solution is to partner with a collaborator near the field site. We describe a semester-long CURE in an animal behavior class that involved collaboration among three institutions: researchers from two “distant” institutions have ongoing research at the “local” institution where the CURE took place. This model uses remote conferencing and strategic collaboration to meet all stakeholders’ needs. Undergraduate students engaged as active participants in collaborative inquiry-based work, learned in a cooperative context, and even participated in the publication process. The local principal investigator and their institution generated a high-impact course that integrated research and teaching. Likewise, the distant principal investigators were able to collect more extensive and longer-term field-based data than otherwise possible, and they gained valuable input from the local researchers that contributed to future projects. Remote collaborations open the door to international collaboration with smaller institutions, promoting greater inclusion in science.
Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket, Teleogryllus oceanicus , and the parasitoid fly, Ormia ochracea , we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations of T. oceanicus that appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences–flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency.
Invasive annual grasses can promote ecosystem state changes and habitat loss in the American Southwest. Non-native annual grasses such as Bromus spp. and Schismus spp. have invaded the Mojave Desert and degraded habitat through increased fire occurrence, severity, and shifting plant community composition. Thus, it is important to identify and characterize the areas where persistent invasion has occurred, identifying where subsequent habitat degradation has increased. Previous plot and landscape-scale analyses have revealed anthropogenic and biophysical correlates with the establishment and dominance of invasive annual grasses in the Mojave Desert. However, these studies have been limited in spatial and temporal scales. Here we use Landsat imagery validated using an extensive network of plot data to map persistent and productive populations of invasive annual grass, called hot spots, across the entire Mojave Desert ecoregion over 12 years (2009–2020). We also identify important variables for predicting hot spot distribution using the Random Forest algorithm and identifying the most invaded subregions. We identified hot spots in over 5% of the Mojave Desert mostly on the western and eastern edges of the ecoregion, and invasive grasses were detected in over 90% of the Mojave Desert at least once in that time. Across the entire Mojave Desert, our results indicate that soil texture, aspect, winter precipitation, and elevation are the highest-ranking predictive variables of invasive grass hot spots, while anthropogenic variables contributed the least to the accuracy of the predictive model. The total area covered by hot spots varied significantly among subregions of the Mojave Desert. We found that anthropogenic variables became more important in explaining invasive annual establishment and persistence as spatial scale was reduced to the subregional level. Our findings have important implications for informing where land management actions can prioritize reducing invasive annual persistence and promoting restoration efforts.
ObjectivesTo determine if five commonly used prognostic indices (PIs) – recursive partitioning analysis (RPA), Score Index for Radiosurgery (SIR), Basic Score for Brain Metastases (BSBM), graded prognostic assessment (GPA), and the diagnosis-specific GPA – are valid following delay between diagnosis and treatment of brain metastases.MethodsIn a single-institutional cohort, records of patients who underwent stereotactic radiosurgery (SRS) more than 30 days from diagnosis of brain metastases were collected, and five PI scores were calculated for each patient. For each PI, three score-based groupings were made to examine survival differences by means of adjusted log-rank analysis and area under the curve (AUC).ResultsOf 121 patients with sufficient PI information, 72 underwent SRS more than 30 days after diagnosis. Median age and Karnofsky performance status were 60 years and 80, respectively. Forty-three (60%) patients had lung primaries. Prior to SRS, 38 (52.8%) and 12 (16.7%) patients underwent whole brain radiation therapy (WBRT) and surgery, respectively. Two (2.8%) patients underwent both WBRT and surgery prior to SRS. A median of two lesions were treated per SRS course. Median survival of the cohort was 9.0 months. Using adjusted log-rank analysis for pairwise comparison, BSBM and GPA showed significance between two out of the three prognostic groups, while the other scores showed either one or no significant differences on comparison. AUC demonstrated good applicability for BSBM, RPA, and GPA, although SIR was statistically less prognostic than the other PIs.ConclusionThe PIs analyzed in this study were applicable in the setting of delayed SRS. Although these data are hypothesis generating, they serve to encourage further analyses to validate a PI that is most optimal for these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.