The renal growth hormone--insulin-like growth factor-I system in acute ischemic renal failure. Recovery from acute tubular necrosis (ATN) is accelerated by IGF-I therapy. Furthermore, the local renal growth hormone-IGF-I system may participate in the natural repair. We examined the IGF-I system in rat kidneys subjected to 60 minute ischemia compared to sham operated controls. Two days after injury, growth hormone receptor mRNA and IGF-I mRNA levels fell approximately 9 to 33% of control values. This was associated with a reduction in kidney immunoreactive IGF-I levels. In contrast, IGF-I receptor mRNA abundance was unchanged. However, plasma membrane IGF-I receptor binding on day 2 and day 7 was near double the control values (P < 0.01). Scatchard analysis revealed a near twofold increase in receptor number. Since receptor mRNA levels were unchanged, this implies receptor protein up-regulation. In contrast to unchanged IGF-I receptor mRNA levels, the abundance of mRNA levels of insulin-like growth factor binding proteins (IGFBP) -2, -3, -4 and -5 fell approximately 14 to 62% of control levels day 2 after injury (P < 0.05), suggesting reduced IGFBP production. Thus, the renal response to ischemic ATN, namely, low IGFBP mRNA levels and high IGF-I receptor number, may function to increase IGF-I bioavailability and thereby enhance the reparative actions of local and circulating IGF-I in ischemic ATN.
These findings are consistent with a sustained role for IGF-I in promoting the exaggerated renal growth of KD and appear to be mediated through local trapping of IGF-I by the overexpressed IGFBP-1, which together with IGF-I can promote renal growth. The selective localization of TGF-beta to hypertrophied nonhyperplastic nephron segments containing IGF-I raises the possibility that TGF-beta may be serving to convert the mitogenic action of IGF-I into a hypertrophic response in these segments. It is also conceivable that TGF-beta may be a cause of the tubulointerstitial infiltrate. Finally, the low circulating IGF-I levels likely contribute to the impaired body growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.