Emotion recognition is defined as identifying human emotion and is directly related to different fields such as human–computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human–robot communication, and many more. This paper proposes a new facial emotional recognition model using a convolutional neural network. Our proposed model, “ConvNet”, detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. The features extracted by the Local Binary Pattern (LBP), region based Oriented FAST and rotated BRIEF (ORB) and Convolutional Neural network (CNN) from facial expressions images were fused to develop the classification model through training by our proposed CNN model (ConvNet). Our method can converge quickly and achieves good performance which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this study focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases at first, and then apply the generalization techniques to the JAFFE and CK+ datasets respectively in the testing stage to evaluate the performance of the model. In the generalization approach on the JAFFE dataset, we get a 92.05% accuracy, while on the CK+ dataset, we acquire a 98.13% accuracy which achieve the best performance among existing methods. We also test the system’s success by identifying facial expressions in real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. However, when compared to other validation methods, the suggested technique was more accurate. ConvNet also achieved validation accuracy of 91.01% for the FER2013 dataset. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN.
Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare field. Traditionally, the healthcare system works based on centralized agents sharing their raw data. Therefore, huge vulnerabilities and challenges are still existing in this system. However, integrating with AI, the system would be multiple agent collaborators who are capable of communicating with their desired host efficiently. Again, FL is another interesting feature, which works decentralized manner; it maintains the communication based on a model in the preferred system without transferring the raw data. The combination of FL, AI, and XAI techniques can be capable of minimizing several limitations and challenges in the healthcare system. This paper presents a complete analysis of FL using AI for smart healthcare applications. Initially, we discuss contemporary concepts of emerging technologies such as FL, AI, XAI, and the healthcare system. We integrate and classify the FL-AI with healthcare technologies in different domains. Further, we address the existing problems, including security, privacy, stability, and reliability in the healthcare field. In addition, we guide the readers to solving strategies of healthcare using FL and AI. Finally, we address extensive research areas as well as future potential prospects regarding FL-based AI research in the healthcare management system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.