In the present study, magnetization and dispersion relations of spin-waves propagating along a segmented nanotube constructed of atomic layers of ferromagnetic and non-magnetic materials are considered by use of the Green function method. Within the framework of random-phase approximation, the expression of Green functions for different spins of segmented nanotubes, which is modeled as having a hexagonal cross section are derived. The effects of the composition (p) and exchange couplings on spin-wave spectra and temperature dependence of magnetization are investigated in detail. It was found that small magnetization is observed in the system at small values of parameter p and exchange constants, and the critical temperature at which second-order phase transition occurs is low. When the obtained theoretical results compare with some other works, a very good agreement between them is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.