Salinity intrusion through the estuaries in low-lying tide-dominated deltas is a serious threat that is expected to worsen in changing climatic conditions. This research makes a comparative analysis on the impact of salinity intrusion due to a reduced upstream discharge, a sea level rise, and cyclonic conditions to find which one of these event dominates the salinity intrusion. A calibrated and validated salinity model (Delft3D) and storm surge model (Delft Dashboard) are used to simulate the surface water salinity for different climatic conditions. Results show that the effects of the reduced upstream discharge, a sea level rise, and cyclones cause different levels of impacts in the Ganges-Brahmaputra-Meghna (GBM) delta along the Bangladesh coast. Reduced upstream discharge causes an increased saltwater intrusion in the entire region. A rising sea level causes increased salinity in the shallower coast. The cyclonic impact on saltwater intrusion is confined within the landfall zone. These outcomes suggest that, for a tide dominated delta, if a sea level rise (SLR) or cyclone occurred, the impact would be conditional and local. However, if the upstream discharge reduces, the impact would be gradual and along the entire coast.
Impact of storm surge largely varies depending on the tidal phase during the landfall of a tropical cyclone. This study investigates comparative variance in inundation condition and thrust force for an identical cyclone during low tide and high tide by applying a numerical model (Delft3D) and a semi-analytical model (DFM). A moderate strength cyclone, Mora, which made landfall on Bangladesh coast in May 2017 is selected to study its impact on land during low tide and high tide. Actual landfall time of Mora was during low tide. To study the impact of storm surge during high tide, a synthetic cyclone is created which has similar strength and track to that of Mora but makes landfall during high tide. The results show that inundation depth, inundation extent, and thrust force increase when a cyclone makes landfall during high tide compared to the condition when the cyclone makes landfall during low tide. But the relation between storm surge impact and tidal phase is not linear. It depends on the land topography of the location, direction of cyclone movement, direction and magnitude of water velocity and wind velocity, gradients of water surface and wind velocity, and proximity and position of the location with respect to cyclone track.
Risk assessment of climatic events and climate change is a globally challenging issue. For risk as well as vulnerability assessment, there can be a large number of socioeconomic indicators, from which it is difficult to identify the most sensitive ones. Many researchers have studied risk and vulnerability assessment through specific set of indicators. The set of selected indicators varies from expert to expert, which inherently results in a biased output. To avoid biased results in this study, the most sensitive indicators are selected through sensitivity analysis performed by applying a non-linear programming system, which is solved by Karush-Kuhn-Tucker conditions. Here, risk is assessed as a function of exposure, hazard, and vulnerability, which is defined in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), where, exposure and vulnerability are described via socioeconomic indicators. The Kolmogorov-Smirnov statistical test is applied to select the set of indicators that are the most sensitive for the system to assess risk. The method is applied to the Bangladesh coast to determine the most sensitive socioeconomic indicators in addition to assessing different climatic and climate change hazard risks. The methodology developed in this study can be a useful tool for risk-based planning.
Bangladesh has a long artificial river embankment, developed mainly for the protection of its inhabitants and resources from disastrous flash floods, tidal water, cyclone surges, river currents and others. This process increases erosion of embankments and water turbidity which bring the concerned sediments from alluvial land to the inland sides and river bed that further increase vertical soil accommodation and decrease the water depth. In this research geotechnical hazard analysis has been conducted based on the statistical riverine data and flood occurrence information, obtained from various recognized institutions and secondary literatures and scientific investigation of soil structural failures from field survey. The soil characteristics and existing conditions of the embankments of the three big rivers of Bangladesh -the Ganges, the Meghna, and the Brahmaputra-Jamuna, have been investigated. The research also includes the reasons behind the failure of different embankments that were happened in last decades. A design methodology has been proposed to make these embankments more durable and to improve the strength using a pre-designed methodological case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.