Methanogenic archaea reside primarily in the rumen and the lower segments of the intestines of ruminants, where they utilize the reducing equivalents derived from rumen fermentation to reduce carbon dioxide, formic acid, or methylamines to methane (CH4). Research on methanogens in the rumen has attracted great interest in the last decade because CH4 emission from ruminants contributes to global greenhouse gas emission and represents a loss of feed energy. Some DNA-based phylogenetic studies have depicted a diverse and dynamic community of methanogens in the rumen. In the past decade, researchers have focused on elucidating the underpinning that determines and affects the diversity, composition, structure, and dynamics of methanogen community of the rumen. Concurrently, many researchers have attempted to develop and evaluate interventions to mitigate enteric CH4 emission. Although much work has been done using plant secondary metabolites, other approaches such as using nitrate and 3-nitrooxy propanol have also yielded promising results. Most of these antimethanogenic compounds or substances often show inconsistent results among studies and also lead to adverse effects on feed intake and digestion and other aspects of rumen fermentation when fed at doses high enough to achieve effective mitigation. This review provides a brief overview of the rumen methanogens and then an appraisal of most of the antimethanogenic compounds and substances that have been evaluated both in vitro and in vivo. Knowledge gaps and future research needs are also discussed with a focus on methanogens and methane mitigation.
The new consensus guidelines provide better sensitivity, performance of factors predicting malignancy, and balanced accuracy in the diagnosis of BD-IPMN malignancy. Size alone was limited in predicting malignancy. Variability in clinical significance of the individual factors associated with a risk of malignancy indicates the need for a tailored approach in the management of patients with BD-IPMN.
A facultative bacterium producing cellulolytic and hemicellulolytic enzymes was isolated from the rumen of a native Korean goat. The bacterium was identified as a Bacillus licheniformis on the basis of biochemical and morphological characteristics and 16S rDNA sequences, and has been designated Bacillus licheniformis JK7. Endoglucanase activities were higher than those of β-glucosidase and xylanase at all temperatures. Xylanase had the lowest activity among the three enzymes examined. The optimum temperature for the enzymes of Bacillus licheniformis JK7 was 70°C for endoglucanase (0.75 U/ml) and 50°C for β-glucosidase and xylanase (0.63 U/ml, 0.44 U/ml, respectively). All three enzymes were stable at a temperature range of 20 to 50°C. At 50°C, endoglucanse, β-glucosidase, and xylanase had 90.29, 94.80, and 88.69% residual activity, respectively. The optimal pH for the three enzymes was 5.0, at which their activity was 1.46, 1.10, and 1.08 U/ml, respectively. The activity of all three enzymes was stable in the pH range of 3.0 to 6.0. Endoglucanase activity was increased 113% by K+, while K+, Zn+, and tween 20 enhanced β-glucosidase activity. Xylanase showed considerable activity even in presence of selected chemical additives, with the exception of Mn2+ and Cu2+. The broad range of optimum temperatures (20 to 40°C) and the stability under acidic pH (4 to 6) suggest that the cellulolytic enzymes of Bacillus licheniformis JK7 may be good candidates for use in the biofuel industry.
The gastrointestinal (GI) tract, including the rumen and the other intestinal segments of cattle, harbors a diverse, complex, and dynamic microbiome that drives feed digestion and fermentation in cattle, determining feed efficiency and output of pollutants. This microbiome also plays an important role in affecting host health. Research has been conducted for more than a century to understand the microbiome and its relationship to feed efficiency and host health. The traditional cultivation-based research elucidated some of the major metabolism, but studies using molecular biology techniques conducted from late 1980’s to the late early 2000’s greatly expanded our view of the diversity of the rumen and intestinal microbiome of cattle. Recently, metagenomics has been the primary technology to characterize the GI microbiome and its relationship with host nutrition and health. This review addresses the main methods/techniques in current use, the knowledge gained, and some of the challenges that remain. Most of the primers used in quantitative real-time polymerase chain reaction quantification and diversity analysis using metagenomics of ruminal bacteria, archaea, fungi, and protozoa were also compiled.
Ruminal ciliates both preys on and form symbiotic relationships with other members of the ruminal microbiota for their survival. However, it remains elusive if they have selectivity over their preys or symbionts. In the present study, we investigated the above selectivity by identifying and comparing the free-living prokaryotes (FLP) and the ciliate-associated prokaryotes (CAP) using Illumina MiSeq sequencing of 16S rRNA gene amplicons. We used single ciliates cells of both monocultures of Entodinium caudatum and Epidinium caudatum and eight different ciliate genera isolated from fresh rumen fluid of dairy cows. Irrespective of the source (laboratory monocultures vs. fresh isolates) of the single ciliate cells, the CAP significantly differed from the FLP in microbiota community profiles. Many bacterial taxa were either enriched or almost exclusively found in the CAP across most of the ciliate genera. A number of bacteria were also found for the first time as ruminal bacteria in the CAP. However, no clear difference was found in methanogens between the CAP and the FLP, which was confirmed using methanogen-specific qPCR. These results suggest that ruminal ciliates probably select their preys and symbionts, the latter of which has rarely been found among the free-living ruminal prokaryotes. The bacteria enriched or exclusively found in the CAP can be target bacteria to detect and localize using specific probes designed from their 16S rRNA sequences, to characterize using single-cell genomics, or to isolate using new media designed based on genomic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.