Molecular determinants of threshold differences among cold thermoreceptors are unknown. Here we show that such differences correlate with the relative expression of I KD , a current dependent on Shaker-like Kv1 channels that acts as an excitability brake, and I TRPM8 , a cold-activated excitatory current. Neurons responding to small temperature changes have high functional expression of TRPM8 (transient receptor potential cation channel, subfamily M, member 8) and low expression of I KD . In contrast, neurons activated by lower temperatures have a lower expression of TRPM8 and a prominent I KD . Otherwise, both subpopulations have nearly identical membrane and firing properties, suggesting that they belong to the same neuronal pool. Blockade of I KD shifts the threshold of cold-sensitive neurons to higher temperatures and augments cold-evoked nocifensive responses in mice. Similar behavioral effects of I KD blockade were observed in TRPA1 Ϫ/Ϫ mice. Moreover, only a small percentage of trigeminal cold-sensitive neurons were activated by TRPA1 agonists, suggesting that TRPA1 does not play a major role in the detection of low temperatures by uninjured somatic cold-specific thermosensory neurons under physiological conditions. Collectively, these findings suggest that innocuous cooling sensations and cold discomfort are signaled by specific low-and high-threshold cold thermoreceptor neurons, differing primarily in their relative expression of two ion channels having antagonistic effects on neuronal excitability. Thus, although TRPM8 appears to function as a critical cold sensor in the majority of peripheral sensory neurons, the expression of Kv1 channels in the same terminals seem to play an important role in the peripheral gating of cold-evoked discomfort and pain.
Transient receptor potential melastatin 8 (TRPM8) is the best molecular candidate for innocuous cold detection by peripheral thermoreceptor terminals. To dissect out the contribution of this cold-and menthol-gated, nonselective cation channel to cold transduction, we identified BCTC [N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide] as a potent and full blocker of recombinant TRPM8 channels. In cold-sensitive trigeminal ganglion neurons of mice and guinea pig, responses to menthol were abolished by BCTC. In contrast, the effect of BCTC on cold-evoked responses was variable but showed a good correlation with the presence or lack of menthol sensitivity in the same neuron, suggesting a specific blocking action of BCTC on TRPM8 channels. The biophysical properties of native cold-gated currents (I cold ), and the currents blocked by BCTC were nearly identical, consistent with a role of this channel in cold sensing at the soma. The temperature activation threshold of native TRPM8 channels was significantly warmer than those reported in previous expression studies. The effect of BCTC on native I cold was characterized by a dose-dependent shift in the temperature threshold of activation.The role of TRPM8 in transduction was further investigated in the guinea pig cornea, a peripheral territory densely innervated with cold thermoreceptors. All cold-sensitive terminals were activated by menthol, suggesting the functional expression of TRPM8 channels in their membrane. However, the spontaneous activity and firing pattern characteristic of cold thermoreceptors was totally immune to TRPM8 channel blockade with BCTC or SKF96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1 H-imidazole hydrochloride). Cold-evoked responses in corneal terminals were also essentially unaffected by these drugs, whereas responses to menthol were completely abolished. The minor impairment in the ability to transduce cold stimuli by peripheral corneal thermoreceptors during TRPM8 blockade unveils an overlapping functional role for various thermosensitive mechanisms in these nerve terminals.
Cancer-induced bone pain is a major clinical problem. A rat model based on intra-tibial injection of MRMT-1 mammary tumour cells was used to mimic progressive cancer-induced bone pain. At the time of stable behavioural changes (decreased thresholds to mechanical and cold stimuli) and bone destruction, in vivo electrophysiology was used to characterize natural (mechanical, thermal, and cold) and electrical-evoked responses of superficial and deep dorsal horn neurones in halothane-anaesthetized rats. Receptive field size was significantly enlarged for superficial neurones in the MRMT-1 animals. Superficial cells were characterised as either nociceptive specific (NS) or wide dynamic range (WDR). The ratio of WDR to NS cells was substantially different between sham operated (growth media alone) (26:74%) and MRMT-1 injected rats (47:53%). NS cells showed no significant difference in their neuronal responses in MRMT-1-injected compared to sham rats. However, superficial WDR neurones in MRMT-1-injected rats had significantly increased responses to mechanical, thermal and electrical (A beta-, C fibre-, and post-discharge evoked response) stimuli. Deep WDR neurones showed less pronounced changes to the superficial dorsal horn, however, the response to thermal and electrical stimuli, but not mechanical, were significantly increased in the MRMT-1-injected rats. In conclusion, the spinal cord is significantly hyperexcitable with previously superficial NS cells becoming responsive to wide-dynamic range stimuli possibly driving this plasticity via ascending and descending facilitatory pathways. The alterations in superficial dorsal horn neurones have not been reported in neuropathy or inflammation adding to the evidence for cancer-induced bone pain reflecting a unique pain state.
Pain-related behavior in this rat model of cancer-induced bone pain is strongly linked to hyperexcitability of a population of superficial dorsal horn neurones. Gabapentin normalizes the cancer-induced bone pain induced dorsal horn neuronal changes and attenuates pain behavior. It may therefore provide a novel clinical treatment for cancer-induced bone pain.
Clotrimazole (CLT) is a widely used drug for the topical treatment of yeast infections of skin, vagina, and mouth. Common side effects of topical CLT application include irritation and burning pain of the skin and mucous membranes. Here, we provide evidence that transient receptor potential (TRP) channels in primary sensory neurons underlie these unwanted effects of CLT. We found that clinically relevant CLT concentrations activate heterologously expressed TRPV1 and TRPA1, two TRP channels that act as receptors of irritant chemical and/or thermal stimuli in nociceptive neurons. In line herewith, CLT stimulated a subset of capsaicin-sensitive and mustard oil-sensitive trigeminal neurons, and evoked nocifensive behavior and thermal hypersensitivity with intraplantar injection in mice. Notably, CLTinduced pain behavior was suppressed by the TRPV1-antagonist BCTC [(N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide)]and absent in TRPV1-deficient mice. In addition, CLT inhibited the cold and menthol receptor TRPM8, and blocked menthol-induced responses in capsaicin-and mustard oil-insensitive trigeminal neurons. The concentration for 50% inhibition (IC 50 ) of inward TRPM8 current was ϳ200 nM, making CLT the most potent known TRPM8 antagonist and a useful tool to discriminate between TRPM8-and TRPA1-mediated responses. Together, our results identify TRP channels in sensory neurons as molecular targets of CLT, and offer means to develop novel CLT preparations with fewer unwanted sensory side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.