Abstract-This paper is concerned with the analysis of correlation between two high-dimensional data sets when there are only few correlated signal components but the number of samples is very small, possibly much smaller than the dimensions of the data. In such a scenario, a principal component analysis (PCA) rank-reduction preprocessing step is commonly performed before applying canonical correlation analysis (CCA). We present simple, yet very effective approaches to the joint model-order selection of the number of dimensions that should be retained through the PCA step and the number of correlated signals. These approaches are based on reduced-rank versions of the Bartlett-Lawley hypothesis test and the minimum description length information-theoretic criterion. Simulation results show that the techniques perform well for very small sample sizes even in colored noise.
Physical exercise has been shown to modulate activity within the autonomic nervous system (ANS). Considering physical exercise as a holistic stimulus on the nervous system and specifically the ANS, uni- and multimodal analysis tools were applied to characterize centrally driven interactions and control of ANS functions. Nineteen young and physically active participants performed treadmill tests at individually determined moderate and high intensities. Continuous electrodermal activity (EDA), heart rate (HR), and skin temperature at wrist (Temp) were recorded by wireless multisensor devices (Empatica
®
E4, Milan, Italy) before and 30 min after exercise. Artifact-free continuous 3 min intervals were analyzed. For unimodal analysis, mean values were calculated, for bimodal and multimodal analysis canonical correlation analysis (CCA) was performed. Unimodal results indicate that physical exercise affects ANS activity. More specifically, Temp increased due to physical activity (moderate intensity: from 34.15°C to 35.34°C and high intensity: from 34.11°C to 35.09°C). HR increased more for the high (from 60.76 bpm to 79.89 bpm) than for the moderate (from 64.81 bpm to 70.83 bpm) intensity. EDA was higher for the high (pre: 8.06 μS and post: 9.37 μS) than for the moderate (pre: 4.31 μS and post: 3.91 μS) intensity. Bimodal analyses revealed high variations in correlations before exercise. The overall correlation coefficient showed varying correlations in pretest measures for all modality pairs (EDA-HR, HR-Temp, Temp-EDA at moderate: 0.831, 0.998, 0.921 and high: 0.706, 0, 0.578). After exercising at moderate intensity coefficients changed little (0.828, 0.744, 0.994), but increased substantially for all modality pairs after exercising at high intensity (0.976, 0.898, 0.926). Multimodal analysis confirmed bimodal results. Exercise-induced changes in ANS activity can be found in multiple ANS modalities as well as in their interactions. Those changes are intensity-specific: with higher intensity the interactions increase. Canonical correlations between different ANS modalities may therefore offer a feasible approach to determine exercise induced modulations of ANS activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.