There has been intense debate about lockdown policies in the context of Covid-19 for limiting damage both to health and to the economy. We present an AI-driven approach for generating optimal lockdown policies that control the spread of the disease while balancing both health and economic costs. Furthermore, the proposed reinforcement learning approach automatically learns those policies, as a function of disease and population parameters. The approach accounts for imperfect lockdowns, can be used to explore a range of policies using tunable parameters, and can be easily extended to fine-grained lockdown strictness. The control approach can be used with any compatible disease and network simulation models.
Many electricity suppliers around the world are deploying smart meters to gather fine-grained spatiotemporal consumption data and to effectively manage the collective demand of their consumer base. In this paper, we introduce a structured framework and a discriminative index that can be used to segment the consumption data along multiple contextual dimensions such as locations, communities, seasons, weather patterns, holidays, etc. The generated segments can enable various higher-level applications such as usagespecific tariff structures, theft detection, consumer-specific demand response programs, etc. Our framework is also able to track consumers' behavioral changes, evaluate different temporal aggregations, and identify main characteristics which define a cluster.
Recent advancements in NLP have given us models like mBERT and XLMR that can serve over 100 languages. The languages that these models are evaluated on, however, are very few in number, and it is unlikely that evaluation datasets will cover all the languages that these models support. Potential solutions to the costly problem of dataset creation are to translate datasets to new languages or use template-filling based techniques for creation. This paper proposes an alternate solution for evaluating a model across languages which make use of the existing performance scores of the model on languages that a particular task has test sets for. We train a predictor on these performance scores and use this predictor to predict the model's performance in different evaluation settings. Our results show that our method is effective in filling the gaps in the evaluation for an existing set of languages, but might require additional improvements if we want it to generalize to unseen languages.
A significant amount of energy is wasted by electrical appliances when they operate inefficiently either due to anomalies and/or incorrect usage. To address this problem, we present SocketWatch -an autonomous appliance monitoring system. SocketWatch is positioned between a wall socket and an appliance. SocketWatch learns the behavioral model of the appliance by analyzing its active and reactive power consumption patterns. It detects appliance malfunctions by observing any marked deviations from these patterns.SocketWatch is inexpensive and is easy to use: it neither requires any enhancement to the appliances nor to the power sockets nor any communication infrastructure. Moreover, the decentralized approach avoids communication latency and costs, and preserves data privacy. Real world experiments with multiple appliances indicate that SocketWatch can be an effective and inexpensive solution for reducing electricity wastage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.