Recent studies have begun to focus on the signals that regulate axonal protein synthesis and the functional significance of localized protein synthesis. However, identification of proteins that are synthesized in mammalian axons has been mainly based on predictions. Here, we used axons purified from cultures of injury-conditioned adult dorsal root ganglion (DRG) neurons and proteomics methodology to identify axonally synthesized proteins. Reverse transcription (RT)-PCR from axonal preparations was used to confirm that the mRNA for each identified protein extended into the DRG axons. Proteins and the encoding mRNAs for the cytoskeletal proteins -actin, peripherin, vimentin, ␥-tropomyosin 3, and cofilin 1 were present in the axonal preparations. In addition to the cytoskeletal elements, several heat shock proteins (HSP27, HSP60, HSP70, grp75, ␣B crystallin), resident endoplasmic reticulum (ER) proteins (calreticulin, grp78/BiP, ERp29), proteins associated with neurodegenerative diseases (ubiquitin C-terminal hydrolase L1, rat ortholog of human DJ-1/Park7, ␥-synuclein, superoxide dismutase 1), anti-oxidant proteins (peroxiredoxins 1 and 6), and metabolic proteins (e.g., phosphoglycerate kinase 1 (PGK 1), ␣ enolase, aldolase C/Zebrin II) were included among the axonally synthesized proteins. Detection of the mRNAs encoding each of the axonally synthesized proteins identified by mass spectrometry in the axonal compartment indicates that the DRG axons have the potential to synthesize a complex population of proteins. Local treatment of the DRG axons with NGF or BDNF increased levels of cytoskeletal mRNAs into the axonal compartment by twofold to fivefold but had no effect on levels of the other axonal mRNAs studied. Neurotrophins selectively increased transport of -actin, peripherin, and vimentin mRNAs from the cell body into the axons rather than changing transcription or mRNA survival in the axonal compartment.
Subcellular regulation of protein synthesis requires the correct localization of messenger RNAs (mRNAs) within the cell. In this study, we investigate whether the axonal localization of neuronal mRNAs is regulated by extracellular stimuli. By profiling axonal levels of 50 mRNAs detected in regenerating adult sensory axons, we show that neurotrophins can increase and decrease levels of axonal mRNAs. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3) regulate axonal mRNA levels and use distinct downstream signals to localize individual mRNAs. However, myelin-associated glycoprotein and semaphorin 3A regulate axonal levels of different mRNAs and elicit the opposite effect on axonal mRNA levels from those observed with neurotrophins. The axonal mRNAs accumulate at or are depleted from points of ligand stimulation along the axons. The translation product of a chimeric green fluorescent protein–β-actin mRNA showed similar accumulation or depletion adjacent to stimuli that increase or decrease axonal levels of endogenous β-actin mRNA. Thus, extracellular ligands can regulate protein generation within subcellular regions by specifically altering the localized levels of particular mRNAs.
SUMMARY The branching of axons is a fundamental aspect of nervous system development and neuroplasticity. We report that branching of sensory axons in the presence of NGF occurs at sites populated by stalled mitochondria. Translational machinery targets to presumptive branching sites, followed by recruitment of mitochondria to these sites. The mitochondria promote branching through ATP generation and the determination of localized hotspots of active axonal mRNA translation, which contribute to actin-dependent aspects of branching. In contrast, mitochondria do not have a role in the regulation of the microtubule cytoskeleton during NGF-induced branching. Collectively, these observations indicate that sensory axons exhibit multiple potential sites of translation, defined by presence of translational machinery, but active translation occurs following the stalling and respiration of mitochondria at these potential sites of translation. This study reveals a local role for axonal mitochondria in the regulation of the actin cytoskeleton and axonal mRNA translation underlying branching.
Spinal muscular atrophy (SMA), caused by the deletion of the SMN1 gene, is the leading genetic cause of infant mortality. SMN protein is present at high levels in both axons and growth cones, and loss of its function disrupts axonal extension and pathfinding. SMN is known to associate with the RNA-binding protein hnRNP-R, and together they are responsible for the transport and/or local translation of β-actin mRNA in the growth cones of motor neurons. However, the full complement of SMN-interacting proteins in neurons remains unknown. Here we used mass spectrometry to identify HuD as a novel neuronal SMN-interacting partner. HuD is a neuron-specific RNA-binding protein that interacts with mRNAs, including candidate plasticity-related gene 15 (cpg15). We show that SMN and HuD form a complex in spinal motor axons, and that both interact with cpg15 mRNA in neurons. CPG15 is highly expressed in the developing ventral spinal cord and can promote motor axon branching and neuromuscular synapse formation, suggesting a crucial role in the development of motor axons and neuromuscular junctions. Cpg15 mRNA previously has been shown to localize into axonal processes. Here we show that SMN deficiency reduces cpg15 mRNA levels in neurons, and, more importantly, cpg15 overexpression partially rescues the SMN-deficiency phenotype in zebrafish. Our results provide insight into the function of SMN protein in axons and also identify potential targets for the study of mechanisms that lead to the SMA pathology and related neuromuscular diseases.neuritin | embryonic lethal abnormal vision Drosophila-like 4 (ELAV-L4) | local protein synthesis S pinal muscular atrophy (SMA) is a devastating genetic disease leading to infant mortality, due mainly to the loss of α-motor neurons of the spinal cord and brainstem nuclei. SMA occurs due to depletion of a ubiquitously expressed protein, SMN, which in all cells regulates RNA biogenesis and splicing through its role in the assembly of small nuclear ribonucleoprotein (snRNP) complexes (1). Despite the well-characterized association of SMN with the snRNP complex in both the nucleus and cytoplasm of motor neurons, in the axons SMN associates with mobile ribonucleoprotein (RNP) particles that are free of the core snRNP complex proteins (2). Thus, it is hypothesized that SMN may function in the assembly of axonal RNPs to regulate axonal mRNA transport and/or local protein synthesis (3, 4). Deficits in mRNA transport and local mRNA translation are associated with such neurologic disorders as fragile X syndrome and tuberous sclerosis (5, 6). Therefore, the interaction of SMN complex with other RNPs and their associated mRNAs within the axon may be crucial to understanding the pathophysiology of SMA.At present, the only RNP known to bind SMN in the axons is hnRNP-R, which regulates β-actin mRNA localization in growth cones (4). In fact, dissociated motor neurons from a severe SMNdeficiency mouse model, Smn −/− ;SMN2tg, display defects in axonal growth and growth cone morphology and contain reduced level...
Increasing evidence points to the importance of local protein synthesis for axonal growth and responses to axotomy, yet there is little insight into the functions of individual locally synthesized proteins. We recently showed that expression of a reporter mRNA with the axonally localizing β-actin mRNA 3′UTR competes with endogenous β-actin and GAP-43 mRNAs for binding to ZBP1 and axonal localization in adult sensory neurons (Donnelly et al., 2011). Here, we show that the 3′UTR of GAP-43 mRNA can deplete axons of endogenous β-actin mRNA. We took advantage of this 3′UTR competition to address the functions of axonally synthesized β-actin and GAP-43 proteins. In cultured rat neurons, increasing axonal synthesis of β-actin protein while decreasing axonal synthesis of GAP-43 protein resulted in short highly branched axons. Decreasing axonal synthesis of β-actin protein while increasing axonal synthesis of GAP-43 protein resulted in long axons with few branches. siRNA-mediated depletion of overall GAP-43 mRNA from dorsal root ganglia (DRGs) decreased the length of axons, while overall depletion of β-actin mRNA from DRGs decreased the number of axon branches. These deficits in axon growth could be rescued by transfecting with siRNA-resistant constructs encoding β-actin or GAP-43 proteins, but only if the mRNAs were targeted for axonal transport. Finally, in ovo electroporation of axonally targeted GAP-43 mRNA increased length and axonally targeted β-actin mRNA increased branching of sensory axons growing into the chick spinal cord. These studies indicate that axonal translation of β-actin mRNA supports axon branching and axonal translation of GAP-43 mRNA supports elongating growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.