A genome-wide association study of 94,674 multi-ethnic Kaiser Permanente members utilizing 478,866 longitudinal untreated serum lipid electronic-health-record-derived measurements (EHRs) empowered multiple novel findings: 121 new SNP associations (46 primary, 15 conditional, 60 in meta-analysis with Global Lipids Genetic Consortium); increase of 33-42% in variance explained with multiple measurements; sex differences in genetic impact (greater in females for LDL, HDL, TC, the opposite for TG); differences in variance explained amongst non-Hispanic whites, Latinos, African Americans, and East Asians; genetic dominance and epistasis, with strong evidence for both at ABOxFUT2 for LDL; and eQTL tissue-enrichment implicating the liver, adipose, and pancreas. Utilizing EHR pharmacy data, both LDL and TG genetic risk scores (477 SNPs) were strongly predictive of age-at-initiation of lipid-lowering treatment. These findings highlight the value of longitudinal EHRs for identifying novel genetic features of cholesterol and lipoprotein metabolism with implications for lipid treatment and risk of coronary heart disease.
Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy). For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes) that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC) technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package ‘CPBayes’ implementing the proposed method.
In pharmacogenomic studies of quantitative change, any association between genetic variants and the pretreatment (baseline) measurement can bias the estimate of effect between those variants and drug response. A putative solution is to adjust for baseline. We conducted a series of genome-wide association studies (GWASs) for low-density lipoprotein cholesterol (LDL-C) response to statin therapy in 34,874 participants of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort as a case study to investigate the impact of baseline adjustment on results generated from pharmacogenomic studies of quantitative change. Across phenotypes of statin-induced LDL-C change, baseline adjustment identified variants from six loci meeting genomewide significance (SORT/CELSR2/PSRC1, LPA, SLCO1B1, APOE, APOB, and SMARCA4/LDLR). In contrast, baseline-unadjusted analyses yielded variants from three loci meeting the criteria for genome-wide significance (LPA, APOE, and SLCO1B1). A genome-wide heterogeneity test of baseline versus statin on-treatment LDL-C levels was performed as the definitive test for the true effect of genetic variants on statin-induced LDL-C change. These findings were generally consistent with the models not adjusting for baseline signifying that genome-wide significant hits generated only from baseline-adjusted analyses (SORT/CELSR2/PSRC1, APOB, SMARCA4/LDLR) were likely biased. We then comprehensively reviewed published GWASs of drug-induced quantitative change and discovered that more than half (59%) inappropriately adjusted for baseline. Altogether, we demonstrate that (1) baseline adjustment introduces bias in pharmacogenomic studies of quantitative change and (2) this erroneous methodology is highly prevalent. We conclude that it is critical to avoid this common statistical approach in future pharmacogenomic studies of quantitative change.
Discovering pleiotropic loci is important to understand the biological basis of seemingly distinct phenotypes. Most methods for assessing pleiotropy only test for the overall association between genetic variants and multiple phenotypes. To determine which specific traits are pleiotropic, we evaluate via simulation and application three different strategies. The first is model selection techniques based on the inverse regression of genotype on phenotypes. The second is a subset-based meta-analysis ASSET [Bhattacharjee et al., 2012], which provides an optimal subset of non-null traits. And the third is a modified Benjamini-Hochberg (B-H) procedure of controlling the expected false discovery rate [Benjamini and Hochberg, 1995] in the framework of phenome-wide association study. From our simulations we see that an inverse regression based approach MultiPhen [O’Reilly et al., 2012] is more powerful than ASSET for detecting overall pleiotropic association, except for when all the phenotypes are associated and have genetic effects in the same direction. For determining which specific traits are pleiotropic, the modified B-H procedure performs consistently better than the other two methods. The inverse regression based selection methods perform competitively with the modified B-H procedure only when the phenotypes are weakly correlated. The efficiency of ASSET is observed to lie below and in between the efficiency of the other two methods when the traits are weakly and strongly correlated, respectively. In our application to a large GWAS, we find that the modified B-H procedure also performs well, indicating that this may be an optimal approach for determining the traits underlying a pleiotropic signal.
Summary It is now well established that population stratification can result in spurious association findings in genetic case-control studies. However, very few studies have addressed similar issues for mapping quantitative traits. Since quantitative phenotypes are often precursors of clinical end-point traits and carry more information on within-genotype trait variability, it has been argued that studying these quantitative traits may be a more powerful strategy to map genes than the binary clinical end-points. Thus, it is of interest to evaluate the adverse effects of population stratification on the analyses of quantitative traits. The popular statistical tests of association for quantitative traits using population level data are ANOVA, linear regression with an additive allelic effect and Kruskal-Wallis. We have theoretically studied the marginal effects of genetic heterogeneity and phenotypic heterogeneity as well as their joint effects on the false positive rate of the three tests mentioned above. We have carried out extensive simulations under different genetic models and probability distributions of quantitative traits to assess the rate of false positives in the presence of population stratification. We find that the rate of false positives increases at a very fast rate with simultaneous increase in differences in the standardized phenotypic means and marker allele frequencies in the subpopulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.