Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.
Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/ SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10-15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of "cancerselective paralog dependency" may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.
The CRISPR–Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR–Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies.
Macrophages are key cell types of the innate immune system regulating host defense, inflammation, tissue homeostasis and cancer. Within this functional spectrum diverse and often opposing phenotypes are displayed which are dictated by environmental clues and depend on highly plastic transcriptional programs. Among these the ‘classical’ (M1) and ‘alternative’ (M2) macrophage polarization phenotypes are the best characterized. Understanding macrophage polarization in humans may reveal novel therapeutic intervention possibilities for chronic inflammation, wound healing and cancer. Systematic loss of function screening in human primary macrophages is limited due to lack of robust gene delivery methods and limited sample availability. To overcome these hurdles we developed cell-autonomous assays using the THP-1 cell line allowing genetic screens for human macrophage phenotypes. We screened 648 chromatin and signaling regulators with a pooled shRNA library for M1 and M2 polarization modulators. Validation experiments confirmed the primary screening results and identified OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) as a novel mediator of M2 polarization in human macrophages. Our approach offers a possible avenue to utilize comprehensive genetic tools to identify novel candidate genes regulating macrophage polarization in humans.
The first approach is aimed at approximately 26% of patients that have point mutations in DMD gene. Here we used gene editing to correct DMD E2035X, a pathogenic mutation in DMD patient myoblasts by designing short RNA sequences complementary to the locus called guides, paired with the Streptococcus pyogenes Cas9. We were able to generate targeted double stranded DNA breaks that were corrected through homology directed repair using single stranded oligos carrying the corrected DNA sequence. Other pathogenic DMD mutations are duplications, which are found in approximately 13% of DMD patients. Utilizing a modified CRISPR strategy that involves a double nuclease approach we deleted a 145 kb (Exons 18-30) duplication and restored dystrophin expression in patient cells. Furthermore, as an universal, mutation-independent treatment approach, we have also utilized a third modified CRISPR system to upregulate utrophin expression to compensate for the loss of dystrophin. In DMD patient myoblasts, we utilized S.pyogenes Cas9, fused to transcriptional activator VP160 to target utrophin promoter. We demonstrated 2.5-5 fold utrophin upregulation resulting in increased expression of β-dystroglycan, providing evidence for functional significance of this strategy.Lastly, in order to determine if this tool is of potential clinical significance, we have began to interrogate CRISPR/Cas9 system in dystrophin-deficient mdx mouse. We have developed strategies for the delivery of CRISPR machinery via rAAV with the goal to achieve dystrophin editing and utrophin upregulation simultaneously in vivo. Taken together, our proof of concept studies provide insights into the potentially far-reaching impact of the therapeutic benefits of the CRISPR system that can be adapted to target a variety of mutations in DMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.