This study proposes a two-phase single-air-gap axial flux permanent magnet (AFPM) motor that offers a trapezoidal back-electromotive force (EMF) waveform to improve the performance of the only-pull drive technique compared with the radial flux PM (RFPM) motor. The only-pull drive technique provides the benefit of allowing the use of thin magnets in the motor without suffering from irreversible demagnetisation. In the proposed motor, the design geometry is primarily considered to achieve the desired trapezoidal shape of back-EMF. The effects of the geometry are explained with the help of air-gap flux density, flux linkage, and the leakage flux. Both the radial flux and the proposed motor adopt the same design concept and hold equal electromagnetic loadings. The profile of back-EMF and the electromagnetic torque driven by the only-pull drive technique are compared with that of RFPM motor with non-trapezoidal back-EMF. Furthermore, the split configuration is proposed for the AFPM motor to reduce torque ripples. The demagnetisation analysis is performed to confirm the operating point of the magnets in a split-AFPM motor. The results reveal that the AF motor is a good candidate for the only-pull drive technique.
This paper presents a novel topology of dual airgap radial flux permanent magnet vernier machine (PMVM) in order to obtain a higher torque per magnet volume and similar average torque compared to a conventional PMVM machine. The proposed machine contains two stators and a sandwiched yokeless rotor. The yokeless rotor helps to reduce the magnet volume by providing an effective flux linkage in the stator windings. This effective flux linkage improved the average torque of the proposed machine. The competitiveness of the proposed vernier machine was validated using 2D finite element analysis under the same machine volume as that of conventional vernier machine. Moreover, cogging torque, torque ripples, torque density, losses, and efficiency performances also favored the proposed topology.
This paper proposes a two-phase dual-stator axial-flux permanent magnet brushless dc motor with an ironless rotor for higher torque per magnet volume using the only-pull drive technique. The advantage of the ironless rotor is that it reduces magnet volume by providing an effective flux linkage, while the onlypull drive technique, which involves only the pull process, benefits from the use of thin magnets that do not experience the irreversible demagnetization. The axial-flux configuration of the proposed dual-stator motor was adopted because of its capability of achieving the desired trapezoidal back electromotive force that maximizes the advantages of the only-pull drive technique. The thin magnets were fixed on the ironless rotor using a non-magnetic structure, and the stator was particularly designed to implement the only-pull drive technique. The performance of the motor was analyzed in terms of torque per magnet volume using the finite element analysis and validated by the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.