Television shows play an important role in propagating societal norms. Owing to the popularity of the situational comedy (sitcom) genre, it contributes significantly to the overall development of society. In an effort to analyze the content of television shows belonging to this genre, we present a dataset of dialogue turns from popular sitcoms annotated for the presence of sexist remarks. We train a text classification model to detect sexism using domain adaptive learning. We apply the model to our dataset to analyze the evolution of sexist content over the years. We propose a domain-specific semi-supervised architecture for the aforementioned detection of sexism. Through extensive experiments, we show that our model often yields better classification performance over generic deep learning based sentence classification that does not employ domain-specific training. We find that while sexism decreases over time on average, the proportion of sexist dialogue for the most sexist sitcom actually increases. . A quantitative analysis along with a detailed error analysis presents the case for our proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.