Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis.
Improvement of ovarian cancer patient outcome requires well-characterized animal models in which to evaluate novel therapeutics. Xenograft models are frequently used, but with little discussion of disease histology. The objectives of this study were to inject 11 ovarian cancer cell lines intraperitoneally (ip), and a subset intrabursally (ib; orthotopic), into nude mice and to analyze the resulting pathologies. Eight of 11 lines injected ip formed tumors within 3 months at variable rates with the following histological subtype distribution: one endometrioid, one serous, one clear cell, and five undifferentiated. Only mice injected with A2780-cp cells presented with ovarian-specific metastases (11 of 88), and the survival time of these animals was significantly shorter, which may be attributed to the higher proliferation rate as determined by Ki67 positivity. Additional analysis of the influence of the ovarian microenvironment on cell characteristics was conducted with ib injection of two cell lines (OVCA 429 and ES-2). The site of injection did not affect the tumor histology, the effect on proliferation was cell-type dependent, and the tumor take rate (cell survival) was negatively affected for OVCA 429 cells. The animal models described herein represent histologically distinct models of both early and late stage ovarian cancer useful for evaluation of therapeutics.
Previous studies of tissue repair have revealed osteopontin (OPN) to be up-regulated in association with the wound inflammatory response. We hypothesize that OPN may contribute to inflammation-associated fibrosis. In a series of in vitro and in vivo studies, we analyze the effects of blocking OPN expression at the wound, and determine which inflammatory cells, and which paracrine factors from these cells, may be responsible for triggering OPN expression in wound fibroblasts. Delivery of OPN antisense oligodeoxynucleotides into mouse skin wounds by release from Pluronic gel decreases OPN protein levels at the wound and results in accelerated healing and reduced granulation tissue formation and scarring. To identify which leukocytic lineages may be responsible for OPN expression, we cultured fibroblasts in macrophage-, neutrophil-, or mast cell–conditioned media (CM), and found that macrophage- and mast cell–secreted factors, specifically platelet-derived growth factor (PDGF), induced fibroblast OPN expression. Correspondingly, Gleevec, which blocks PDGF receptor signaling, and PDGF-Rβ–neutralizing antibodies, inhibited OPN induction by macrophage-CM. These studies indicate that inflammation-triggered expression of OPN both hinders the rate of repair and contributes to wound fibrosis. Thus, OPN and PDGF are potential targets for therapeutic modulation of skin repair to improve healing rate and quality.
Tissue repair is a complex process that requires wound-edge cells to proliferate and migrate, which in turn necessitates induction of a large repair transcriptome. Epigenetic modifications have emerged as crucial regulators of gene expression. Here, we ask whether epigenetic reprogramming might contribute to the concerted induction of repair genes by wound-edge cells. Polycomb group proteins (PcGs) co-operatively silence genes by laying down repressive marks such as histone H3 lysine 27 trimethylation (H3K27me3), which can be removed by specific demethylases. We show that PcGs Eed, Ezh2 and Suz12 are significantly downregulated during murine skin repair, whereas the newly described demethylases Jmjd3 and Utx are markedly upregulated. Correspondingly, we find a striking reduction of repressive H3K27me3 in the wound epidermis. Quantitative chromatin immunoprecipitation studies have revealed that there is less Eed bound to the regulatory regions of two paradigm wound-induced genes, Myc and Egfr, suggesting that loss of polycomb-mediated silencing might contribute to the induction of repair genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.