Human adult dental pulp stem cells (DPSCs), derived from third molar teeth, are multipotent and have the capacity to differentiate into neurons under inductive conditions both in vitro and following transplantation into the avian embryo. In this study, we demonstrate that the intracerebral transplantation of human DPSCs 24 hours following focal cerebral ischemia in a rodent model resulted in significant improvement in forelimb sensorimotor function at 4 weeks post-treatment. At this time, 2.3 ± 0.7% of engrafted cells had survived in the poststroke brain and demonstrated targeted migration toward the stroke lesion. In the peri-infarct striatum, transplanted DPSCs differentiated into astrocytes in preference to neurons. Our data suggest that the dominant mechanism of action underlying DPSC treatment that resulted in enhanced functional recovery is unlikely to be due to neural replacement. Functional improvement is more likely to be mediated through DPSC-dependent paracrine effects. This study provides preclinical evidence for the future use of human DPSCs in cell therapy to improve outcome in stroke patients.
Objective— Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3 −/− mouse on blood vessel integrity in the central nervous system. Approach and Results— Notch3 −/− mice showed focal disruptions of the blood–brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood–brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3 −/− mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. Conclusions— We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood–brain barrier function in the mammalian vasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.