Abstract. This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7 (v4.7) and points the reader to additional resources for further details. The model updates were evaluated relative to observations and results from previous model versions in a series of simulations conducted to incrementally assess the effect of each change. The focus of this paper is on five major scientific upgrades: (a) updates to the heterogeneous N 2 O 5 parameterization, (b) improvement in the treatment of secondary organic aerosol (SOA), (c) inclusion of dynamic mass transfer for coarse-mode aerosol, (d) revisions to the cloud model, and (e) new options for the calculation of photolysis rates. Incremental test simulations over the eastern United States during January and August 2006 are evaluated to assess the model response to each scientific improvement, providing explanations of differences in results between v4.7 and previously released CMAQ model versions. Particulate sulfate predictions are improved across all monitoring networks during both seasons due to cloud module updates. Numerous updates to the SOA module improve the simulation of seasonal variability and decrease the bias in organic carbon predictions at urban sites in the winter. Bias in the total mass of fine particulate matter (PM 2.5 ) is dominated by overpredictions of unspeciated PM 2.5 (PM other ) in the winter and by underpredictions of carbon in the summer. The CMAQv4.7 model results show slightly worse performance for ozone predictions.Correspondence to: K. M. Foley (foley.kristen@epa.gov) However, changes to the meteorological inputs are found to have a much greater impact on ozone predictions compared to changes to the CMAQ modules described here. Model updates had little effect on existing biases in wet deposition predictions.
Abstract. Air quality models such as the EPA Community Multiscale Air Quality (CMAQ) require meteorological data as part of the input to drive the chemistry and transport simulation. The Meteorology-Chemistry Interface Processor (MCIP) is used to convert meteorological data into CMAQ-ready input. Key shortcoming of such one-way coupling include: excessive temporal interpolation of coarsely saved meteorological input and lack of feedback of atmospheric pollutant loading on simulated dynamics. We have developed a two-way coupled system to address these issues. A single source code principle was used to construct this two-way coupling system so that CMAQ can be consistently executed as a stand-alone model or part of the coupled system without any code changes; this approach eliminates maintenance of separate code versions for the coupled and uncoupled systems. The design also provides the flexibility to permit users: (1) to adjust the call frequency of WRF and CMAQ to balance the accuracy of the simulation versus computational intensity of the system, and (2) to execute the two-way coupling system with feedbacks to study the effect of gases and aerosols on short wave radiation and subsequent simulated dynamics. Details on the development and implementation of this two-way coupled system are provided. When the coupled system is executed without radiative feedback, computational time is virtually identical when using the Community Atmospheric Model (CAM) radiation option and a slightly increased (∼8.5 %) when using the Rapid Radiative Transfer Model for GCMs (RRTMG) radiation option in the coupled system compared to the offline WRF-CMAQ system. Once the feedback mechanism is turned on, the execution time increases only slightly with CAM but increases about 60 % with RRTMG due to the use of a more detailed Mie calculation in this implementation of feedback mechanism. This two-way model with radiative feedback shows noticeably reduced bias in simulated surface shortwave radiation and 2-m temperatures as well improved correlation of simulated ambient ozone and PM 2.5 relative to observed values for a test case with significant tropospheric aerosol loading from California wildfires.
Abstract. The Community Multiscale Air Quality (CMAQ) modeling system, a state-of-the-science regional air quality modeling system developed by the US Environmental Protection Agency, is being used for a variety of environmental modeling problems including regulatory applications, air quality forecasting, evaluation of emissions control strategies, process-level research, and interactions of global climate change and regional air quality. The MeteorologyChemistry Interface Processor (MCIP) is a vital piece of software within the CMAQ modeling system that serves to, as best as possible, maintain dynamic consistency between the meteorological model and the chemical transport model (CTM). MCIP acts as both a post-processor to the meteorological model and a pre-processor to the emissions and the CTM in the CMAQ modeling system. MCIP's functions are to ingest the meteorological model output fields in their native formats, perform horizontal and vertical coordinate transformations, diagnose additional atmospheric fields, define gridding parameters, and prepare the meteorological fields in a form required by the CMAQ modeling system. This paper provides an updated overview of MCIP, documenting the scientific changes that have been made since it was first released as part of the CMAQ modeling system in 1998.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.