Early numerical proficiency lays the foundation for acquiring quantitative skills essential in today's technological society. Identification of cognitive and brain markers associated with long-term growth of children's basic numerical computation abilities is therefore of utmost importance. Previous attempts to relate brain structure and function to numerical competency have focused on behavioral measures from a single time point. Thus, little is known about the brain predictors of individual differences in growth trajectories of numerical abilities. Using a longitudinal design, with multimodal imaging and machine-learning algorithms, we investigated whether brain structure and intrinsic connectivity in early childhood are predictive of 6 year outcomes in numerical abilities spanning childhood and adolescence. Gray matter volume at age 8 in distributed brain regions, including the ventrotemporal occipital cortex (VTOC), the posterior parietal cortex, and the prefrontal cortex, predicted longitudinal gains in numerical, but not reading, abilities. Remarkably, intrinsic connectivity analysis revealed that the strength of functional coupling among these regions also predicted gains in numerical abilities, providing novel evidence for a network of brain regions that works in concert to promote numerical skill acquisition. VTOC connectivity with posterior parietal, anterior temporal, and dorsolateral prefrontal cortices emerged as the most extensive network predicting individual gains in numerical abilities. Crucially, behavioral measures of mathematics, IQ, working memory, and reading did not predict children's gains in numerical abilities. Our study identifies, for the first time, functional circuits in the human brain that scaffold the development of numerical skills, and highlights potential biomarkers for identifying children at risk for learning difficulties.
Mathematical disabilities (MD) have a negative life-long impact on professional success, employment, and health outcomes. Yet, little is known about the intrinsic functional brain organization that contributes to poor math skills in affected children. It is now increasingly recognized that math cognition requires coordinated interaction within a large-scale fronto-parietal network anchored in the intraparietal sulcus (IPS). Here we characterize intrinsic functional connectivity within this IPS-network in children with MD, relative to a group of typically developing (TD) children who were matched on age, gender, IQ, working memory, and reading abilities. Compared to TD children, children with MD showed hyper-connectivity of the IPS with a bilateral fronto-parietal network. Importantly, aberrant IPS connectivity patterns accurately discriminated children with MD and TD children, highlighting the possibility for using IPS connectivity as a brain-based biomarker of MD. To further investigate regional abnormalities contributing to network-level deficits in children with MD, we performed whole-brain analyses of intrinsic low-frequency fluctuations. Notably, children with MD showed higher low-frequency fluctuations in multiple fronto-parietal areas that overlapped with brain regions that exhibited hyper-connectivity with the IPS. Taken together, our findings suggest that MD in children is characterized by robust network-level aberrations, and is not an isolated dysfunction of the IPS. We hypothesize that intrinsic hyper-connectivity and enhanced low-frequency fluctuations may limit flexible resource allocation, and contribute to aberrant recruitment of task-related brain regions during numerical problem solving in children with MD.
Positive attitude is thought to impact academic achievement and learning in children, but little is known about its underlying neurocognitive mechanisms. Using a large behavioral sample of 240 children, we found that positive attitude toward math uniquely predicted math achievement, even after we accounted for multiple other cognitive-affective factors. We then investigated the neural mechanisms underlying the link between positive attitude and academic achievement in two independent cohorts of children (discovery cohort: n = 47; replication cohort: n = 28) and tested competing hypotheses regarding the differential roles of affective-motivational and learning-memory systems. In both cohorts, we found that positive attitude was associated with increased engagement of the hippocampal learning-memory system. Structural equation modeling further revealed that, in both cohorts, increased hippocampal activity and more frequent use of efficient memory-based strategies mediated the relation between positive attitude and higher math achievement. Our study is the first to elucidate the neurocognitive mechanisms by which positive attitude influences learning and academic achievement.
In today’s research environment, children’s diet, physical activity, and other lifestyle factors are commonly studied in the context of health, independent of their effect on cognition and learning. Moreover, there is little overlap between the two literatures, although it is reasonable to expect that the lifestyle factors explored in the health-focused research are intertwined with cognition and learning processes. This thematic review provides an overview of knowledge connecting the selected lifestyle factors of diet, physical activity, and sleep hygiene to children’s cognition and learning. Research from studies of diet and nutrition, physical activity and fitness, sleep, and broader influences of cultural and socioeconomic factors related to health and learning, were summarized to offer examples of research that integrate lifestyle factors and cognition with learning. The literature review demonstrates that the associations and causal relationships between these factors are vastly understudied. As a result, current knowledge on predictors of optimal cognition and learning is incomplete, and likely lacks understanding of many critical facts and relationships, their interactions, and the nature of their relationships, such as there being mediating or confounding factors that could provide important knowledge to increase the efficacy of learning-focused interventions. This review provides information focused on studies in children. Although basic research in cells or animal studies are available and indicate a number of possible physiological pathways, inclusion of those data would distract from the fact that there is a significant gap in knowledge on lifestyle factors and optimal learning in children. In a climate where childcare and school feeding policies are continuously discussed, this thematic review aims to provide an impulse for discussion and a call for more holistic approaches to support child development.
Developmental dyslexia, characterized by unexpected reading difficulty, is associated with anomalous brain anatomy and function. Previous structural neuroimaging studies have converged in reports of less gray matter volume (GMV) in dyslexics within left hemisphere regions known to subserve language. Due to the higher prevalence of dyslexia in males, these studies are heavily weighted towards males, raising the question whether studies of dyslexia in females only and using the same techniques, would generate the same findings. In a replication study of men we obtained the same findings of less GMV in dyslexics in left middle/inferior temporal gyri and right postcentral/supramarginal gyri as reported in the literature. However, comparisons in women with and without dyslexia did not yield left hemisphere differences and instead we found less GMV in right precuneus and paracentral lobule/medial frontal gyrus. In boys, we found less GMV in left inferior parietal cortex (supramarginal/angular gyri), again consistent with previous work, while in girls differences were within right central sulcus, spanning adjacent gyri, and left primary visual cortex. Our investigation into anatomical variants in dyslexia replicates existing studies in males, but at the same time shows that dyslexia in females is not characterized by involvement of left hemisphere language regions but rather early sensory and motor cortices (i.e. motor and premotor cortex, primary visual cortex). Our findings suggest that models on the brain basis of dyslexia, primarily developed through the study of males, may not be appropriate for females and suggest a need for more sex-specific investigations into dyslexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.