A three-dimensional (3-D) cell culture system that allows control of both substrate stiffness and integrin binding density was created and characterized. This system consisted of two self-assembling peptide (SAP) sequences that were mixed in different ratios to achieve the desired gel stiffness and adhesiveness. The specific peptides used were KFE ((acetyl)-FKFEFKFE-CONH2), which has previously been reported not to support cell adhesion or MVN formation, and KFE-RGD ((acetyl)-GRGDSP-GG-FKFEFKFE-CONH2), which is a similar sequence that incorporates the RGD integrin binding site. Storage modulus for these gels ranged from ~60 to 6000 Pa, depending on their composition and concentration. Atomic force microscopy revealed ECM-like fiber microarchitecture of gels consisting of both pure KFE and pure KFE-RGD as well as mixtures of the two peptides. This system was used to study the contributions of both matrix stiffness and adhesiveness on microvascular network (MVN) formation of endothelial cells and the morphology of human mesenchymal stem cells (hMSC). When endothelial cells were encapsulated within 3-D gel matrices without binding sites, little cell elongation and no network formation occurred, regardless of the stiffness. In contrast, matrices containing the RGD binding site facilitated robust MVN formation, and the extent of this MVN formation was inversely proportional to matrix stiffness. Compared with a matrix of the same stiffness with no binding sites, a matrix containing RGD-functionalized peptides resulted in a ~2.5-fold increase in the average length of network structure, which was used as a quantitative measure of MVN formation. Matrices with hMSC facilitated an increased number and length of cellular projections at higher stiffness when RGD was present, but induced a round morphology at every stiffness when RGD was absent. Taken together, these results demonstrate the ability to control both substrate stiffness and binding site density within 3-D cell-populated gels and reveal an important role for both stiffness and adhesion on cellular behavior that is cell-type specific.
High 'n low: The novel {[Fe(tmphen)2]3[Os(CN)6]2} complex (see structure) is the first example of a cluster in which a high‐spin FeIII ion is in a coordination environment of four imine nitrogen atoms and two N‐coordinated cyanides. Magnetic studies reveal an unprecedented type of reversible charge transfer induced spin transition (CTIST) between the low‐spin FeIINCOsIII and high‐spin FeIIINCOsII systems.
Antibiotic loaded cement beads are commonly used for the treatment of biofilm related orthopaedic periprosthetic infections; however the effects of antibiotic loading and exposure of beads to body fluids on release kinetics are unclear. The purpose of this study was to determine the effects of (i) antibiotic loading density (ii) loading amount (iii) material type and (iv) exposure to body fluids (blood or synovial fluid) on release kinetics and efficacy of antibiotics against planktonic and lawn biofilm bacteria. Short-term release into an agar gel was evaluated using a fluorescent tracer (fluorescein) incorporated in the carrier materials calcium sulfate (CaSO) and poly methyl methacrylate (PMMA). Different fluorescein concentrations in CaSO beads were evaluated. Mechanical properties of fluorescein-incorporated beads were analyzed. Efficacy of the antibiotics vancomycin (VAN) or tobramycin (TOB) alone and in combination was evaluated against lawn biofilms of bioluminescent strains of Staphylococcus aureus and Pseudomonas aeruginosa. Zones of inhibition of cultures (ZOI) were measured visually and using an in-vivo imaging system (IVIS). The influence of body fluids on release was assessed using CaSO beads that contained fluorescein or antibiotics and were pre-coated with human blood or synovial fluid. The spread from the beads followed a square root of time relationship in all cases. The loading concentration had no influence on short-term fluorescein release and pre-coating of beads with body fluids did not affect short-term release or antibacterial activity. Compared to PMMA, CaSO had a more rapid short term rate of elution and activity against planktonic and lawn biofilms. This study highlights the importance of considering antibiotic loading and packing density when investigating the clinical application of bone cements for infection management.
In recent years, superparamagnetic nanoparticles (SPNs) have become increasingly important in applications ranging from solid state memory devices to biomedical diagnostic and therapeutic tools. However, detection and characterization of the small and unstable magnetic moment of an SPN at the single particle level remains a challenge. Further, depending on their physical shape, crystalline structure or orientation, SPNs may also possess magnetic anisotropy, which can govern the extent to which their magnetic moments can align with an externally applied magnetic field. Here, we demonstrate how we can exploit the magnetic anisotropy of SPNs to enable uniform, highly-sensitive detection of single SPNs using magnetic force microscopy (MFM) in ambient air. Superconducting quantum interference device magnetometry and analytical transmission electron microscopy techniques are utilized to characterize the collective magnetic behavior, morphology and composition of the SPNs. Our results show how the consideration of magnetic anisotropy can enhance the ability of MFM to detect single SPNs at ambient room temperature with high force sensitivity and spatial resolution.
Combining LEGO® Dacta building blocks with LabVIEWTM software produced a highly successful, low‐cost (less than $500 per station excluding computer) alternative method of teaching engineering through hands‐on experimentation. Dubbed LEGO® Data Acquisition and Prototyping System (or LDAPS), this combination of tools provides a highly capable workbench for students, yet brings a new level of creativity and fun into teaching engineering at the college level. In this paper we present the methodology and describe one class where it is currently in use. Student, faculty, and staff response to the class was very positive, partly due to the popularity of hands‐on engineering and partly because LEGO® blocks allow the students to exercise their creativity and innovation. The strength in the LDAPS methodology lies in the power of the LEGO® bricks and the LabVIEWTM software. LEGO® motors, sensors, and bricks are almost infinitely configurable, making each experiment unique. LabVIEWTM is a powerful, visual programming language in which students can perform advanced signal processing with relatively few programming skills. We are currently extending this methodology to teach engineering to liberal arts majors as well as precollege students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.