vation depression of the soleus H reflex measured using threshold tracking. J Neurophysiol 100: 3275-3284, 2008. First published October 15, 2008 doi:10.1152/jn.90435.2008. The interpretation of changes in the soleus H reflex is problematic in the face of reflex gain changes, a nonlinear input/output relationship for the motoneuron pool, and a nonhomogeneous response of different motoneurons to afferent inputs. By altering the stimulus intensity to maintain a constant reflex output, threshold tracking allows a relatively constant population of ␣-motoneurons to be studied. This approach was used to examine postactivation ("homosynaptic") depression of the H reflex (HD) in 23 neurologically healthy subjects. The H reflex was elicited by tibial nerve stimulation at 0.05, 0.1, 0.3, 1, and 2 Hz at rest and during voluntary plantar flexion at 2.5, 5, and 10% of maximum. A computerized threshold tracking procedure was used to set the current needed to generate a target H reflex 10% of M max . The current needed to produce the target reflex increased with stimulus rate but not significantly beyond 1 Hz. In three subjects, the current needed to produce H reflexes of 5, 10, 15, and 20% M max at 0.3, 1, and 2 Hz increased with rate and with the size of the test H reflex. HD was significantly reduced during voluntary contractions. Using threshold tracking, HD was maximal at lower frequencies than previously emphasized, probably because HD is greater the larger the test H reflex. This would reinforce the greater sensitivity of small motoneurons to reflex inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.