Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.
Single nucleotide mutations in SIX1 are causative in some individuals diagnosed with branchiootic/branchio-oto-renal (BOR) syndrome. To test whether these mutations have differential effects on otic gene expression, we engineered four BOR mutations in Xenopus six1 and targeted mutant protein expression to the neural crest and cranial placode precursor cells in wild-type embryos. Changes in the otic expression of putative Six1 targets and/or co-factors were monitored by qRT-PCR and in situ hybridization. We found that each mutant had a different combination of effects. The V17E mutant reduced eya2, tspan13, zbtb16 and pa2g4 otic vesicle expression at a frequency indistinguishable from wildtype Six1, but reduced prdm1 more and spry1 less compared to wild-type Six1. For most of these genes, the R110W, W122R and Y129C mutants were significantly less repressive compared to wild-type Six1. Their individual effects varied according to the level at which they were expressed. The R110W, W122R and Y129C mutants also often expanded prdm1 otic expression. Since previous studies showed that all four mutants are transcriptionally deficient and differ in their ability to interact with co-factors such as Eya1, we propose that altered co-factor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.