The outburst of microbial resistance to antibiotics creates the need for new sources of active compounds for the treatment of pathogenic microorganisms. Marine microalgae are of particular interest in this context because they have developed tolerance and defense strategies to resist the exposure to pathogenic bacteria, viruses, and fungi in the aquatic environment. Although antimicrobial activities have been reported for some microalgae, natural algal bioactive peptides have not been described yet. In this work, acid extracts from the microalga Tetraselmis suecica with antibacterial activity were analyzed, and de novo sequences of peptides were determined. Synthetic peptides and their alanine and lysine analogs allowed identifying key residues and increasing their antibacterial activity. Additionally, it was determined that the localization of positive charges within the peptide sequence influences the secondary structure with tendency to form an alpha helical structure.
Peptide synthesis is an area with a wide field of application, from biomedicine to nanotechnology, that offers the option of simultaneously synthesizing a large number of sequences for the purpose of preliminary screening, which is a powerful tool. Nevertheless, standard protocols generate large volumes of solvent waste. Here, we present a protocol for the multiple Fmoc solid-phase peptide synthesis in tea bags, where reagent recycling steps are included. Fifty-two peptides with wide amino acid composition and seven to twenty amino acid residues in length were synthesized in less than three weeks. A clustering analysis was performed, grouping the peptides by physicochemical features. Although a relationship between the overall yield and the physicochemical features of the sequences was not established, the process showed good performance despite sequence diversity. The recycling system allowed to reduce N, N-dimethylformamide usage by 25–30% and reduce the deprotection reagent usage by 50%. This protocol has been optimized for the simultaneous synthesis of a large number of peptide sequences. Additionally, a reagent recycling system was included in the procedure, which turns the process into a framework of circular economy, without affecting the quality of the products obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.