Dominant mutations in transactive response DNA-binding protein-43 (TDP-43) cause amyotrophic lateral sclerosis. TDP-43 inclusions occur in neurons, glia and muscle in this disease and in sporadic and inherited forms of frontotemporal lobar degeneration. Cytoplasmic localization, cleavage, aggregation and phosphorylation of TDP-43 at the Ser409/410 epitope have been associated with disease pathogenesis. TDP-43 aggregation is not a common feature of mouse models of TDP-43 proteinopathy, and TDP-43 is generally not thought to acquire an amyloid conformation or form fibrils. A number of putative TDP-43 kinases have been identified, but whether any of these functions to regulate TDP-43 phosphorylation or toxicity in vivo is not known. Here, we demonstrate that human TDP-43(Q331K) undergoes cytoplasmic localization and aggregates when misexpressed in Drosophila when compared with wild-type and M337V forms. Coexpression of Q331K with doubletime (DBT), the fly homolog of casein kinase Iε (CKIε), enhances toxicity. There is at best modest basal phosphorylation of misexpressed human TDP-43 in Drosophila, but coexpression with DBT increases Ser409/410 phosphorylation of all TDP-43 isoforms tested. Phosphorylation of TDP-43 in the fly is specific for DBT, as it is not observed using the validated tau kinases GSK-3β, PAR-1/MARK2 or CDK5. Coexpression of DBT with TDP-43(Q331K) enhances the formation of high-molecular weight oligomeric species coincident with enhanced toxicity, and treatment of recombinant oligomeric TDP-43 with rat CKI strongly enhances its toxicity in mammalian cell culture. These data identify CKIε as a potent TDP-43 kinase in vivo and implicate oligomeric species as the toxic entities in TDP-43 proteinopathies.
The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development.
We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while “second-hits” in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of “second-hit” genes in Drosophila melanogaster and Xenopus laevis. We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with “second-hit” genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific “second-hit” genes (such as ARID1B and CACNA1A), genes within neurodevelopmental pathways (such as PTEN and UBE3A), and transcriptomic targets (such as DSCAM and TRRAP) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, patient-specific “second-hits” enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs in 32/96 pairwise combinations tested. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis, leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with “second-hit” genes determine the ultimate phenotypic manifestation.
Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine expansion in the huntington protein (htt). The neuropathological hallmark of HD is the loss of neurons in the striatum and, to a lesser extent, in the cortex. Foxp1 is a member of the Forkhead family of transcription factors expressed selectively in the striatum and the cortex. In the brain, three major Foxp1 isoforms are expressed: isoform-A (ϳ90 kDa), isoform-D (ϳ70 kDa), and isoform-C (ϳ50 kDa). We find that expression of Consistently, Foxp1 activates transcription of the p21Waf1/Cip1 gene promoter, and overexpression of Foxp1 in neurons results in the elevation of p21 expression. Moreover, knocking down of p21Waf1/Cip1 blocks the ability of Foxp1 to protect neurons from mut-Htt-induced neurotoxicity. We propose that the selective vulnerability of neurons of the striatum and cortex in HD is related to the loss of expression of Foxp1, a protein that is highly expressed in these neurons and required for their survival.
1The chromosome 3q29 deletion is associated with a range of neurodevelopmental disorders. 2 Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis 3 models with tissue-specific knockdown of individual homologs of genes within the 3q29 4 region. We identified developmental, cellular and neuronal phenotypes for multiple 5 homologs, potentially due to altered apoptosis and cell cycle mechanisms. We screened for 6 314 pairwise knockdowns of fly homologs of 3q29 genes, and identified 44 interactions 7 between pairs of homologs and 34 interactions with other neurodevelopmental genes. NCBP2 8 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of the other 9 homologs, leading to significant increases in apoptosis that disrupted cellular organization 10 and brain morphology. These cellular and neuronal defects were rescued with overexpression 11 of the apoptosis inhibitors Diap1 and xiap in both models. Our study suggests that NCBP2-12 mediated genetic interactions contribute to the neurodevelopmental features of the 3q29 13 deletion. 14 15 IMPACT STATEMENT 16 NCBP2 homologs in Drosophila and X. laevis enhance the neurodevelopmental phenotypes 17 of other homologs of genes within the 3q29 deletion region, leading to disruptions in several 18 cellular mechanisms.19 20
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.