In this paper, we consider a recently developed formulation of the electric orbit-raising problem that utilizes a novel dynamic model and a sequence of optimal control sub-problems to yield fast and robust computations of low-thrust trajectories. This paper proposes two enhancements of the computational framework. First, we use thruster efficiency in order to determine the trajectory segments over which the spacecraft coasts. Second, we propose the use of a neural network to compute the solar array degradation in the Van Allen radiation belts. The neural network is trained on AP-9 data and SPENVIS in order to compute the associated power loss. The proposed methodology is demonstrated by considering transfers from different geosynchronous transfer orbits. Numerical simulations analyzing the effect of thruster efficiency and average power degradation indicate the suitability of starting the maneuver from super-geosynchronous transfer orbits in order to limit fuel expenditure and radiation damage. Furthermore, numerical simulations demonstrate that proposed enhancements are achieved with only marginal increase in computational runtime, thereby still facilitating rapid exploration of all-electric mission scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.