Multilevel linguistic features have been proposed for discourse analysis, but there have been few applications of multilevel linguistic features to readability models and also few validations of such models. Most traditional readability formulae are based on generalized linear models (GLMs; e.g., discriminant analysis and multiple regression), but these models have to comply with certain statistical assumptions about data properties and include all of the data in formulae construction without pruning the outliers in advance. The use of such readability formulae tends to produce a low text classification accuracy, while using a support vector machine (SVM) in machine learning can enhance the classification outcome. The present study constructed readability models by integrating multilevel linguistic features with SVM, which is more appropriate for text classification. Taking the Chinese language as an example, this study developed 31 linguistic features as the predicting variables at the word, semantic, syntax, and cohesion levels, with grade levels of texts as the criterion variable. The study compared four types of readability models by integrating unilevel and multilevel linguistic features with GLMs and an SVM. The results indicate that adopting a multilevel approach in readability analysis provides a better representation of the complexities of both texts and the reading comprehension process.
Textual analysis has been applied to various fields, such as discourse analysis, corpus studies, text leveling, and automated essay evaluation. Several tools have been developed for analyzing texts written in alphabetic languages such as English and Spanish. However, currently there is no tool available for analyzing Chinese-language texts. This article introduces a tool for the automated analysis of simplified and traditional Chinese texts, called the Chinese Readability Index Explorer (CRIE). Composed of four subsystems and incorporating 82 multilevel linguistic features, CRIE is able to conduct the major tasks of segmentation, syntactic parsing, and feature extraction. Furthermore, the integration of linguistic features with machine learning models enables CRIE to provide leveling and diagnostic information for texts in language arts, texts for learning Chinese as a foreign language, and texts with domain knowledge. The usage and validation of the functions provided by CRIE are also introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.