Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we report a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Our battery shows high cycling stability, as evidenced by the efficiencies for Li-metal plating/stripping (99.2%) for a 5 V cathode LiCoPO (~99.81%) and a Ni-rich LiNiMnCoO cathode (~99.93%). At a loading of 2.0 mAh cm, our full cells retain ~93% of their original capacities after 1,000 cycles. Surface analyses and quantum chemistry calculations show that stabilization of these aggressive chemistries at extreme potentials is due to the formation of a several-nanometre-thick fluorinated interphase.
Aqueous Zn batteries are promising
energy storage devices for large-scale
energy-storage due to low cost and high energy density. However, their
lifespan is limited by the water decomposition and Zn dendrite growth.
Here, we suppress water reduction and Zn dendrite growth in dilute
aqueous electrolyte by adding dimethyl sulfoxide (DMSO) into ZnCl2–H2O, in which DMSO replaces the H2O in Zn2+ solvation sheath due to a higher Gutmann donor
number (29.8) of DMSO than that (18) of H2O. The preferential
solvation of DMSO with Zn2+ and strong H2O–DMSO
interaction inhibit the decomposition of solvated H2O.
In addition, the decomposition of solvated DMSO forms Zn12(SO4)3Cl3(OH)15·5H2O, ZnSO3, and ZnS enriched-solid electrolyte interphase
(SEI) preventing Zn dendrite and further suppressing water decomposition.
The ZnCl2–H2O–DMSO electrolyte
enables Zn anodes in Zn||Ti half-cell to achieve a high average Coulombic
efficiency of 99.5% for 400 cycles (400 h), and the Zn||MnO2 full cell with a low capacity ratio of Zn:MnO2 at 2:1
to deliver a high energy density of 212 Wh/kg (based on both cathode
and anode) and maitain 95.3% of the capacity over 500 cycles at 8
C.
Li metal is regarded as the ''Holy Grail'' electrode because of its highest specific capacity and lowest electrochemical potential. However, challenges arising from the low Coulombic efficiency (CE) and dendritic nature of Li metal in carbonate electrolytes remain to be resolved. Here, by increasing LiFSI salt concentration in the carbonate electrolyte, we successfully increased the CE to 99.3% while suppressing Li dendrite formation. An NMC622jjLi cell was paired and showed excellent cycling performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.