Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their narrow electrochemical stability window (1.23 volts), which sets an intrinsic limit on the practical voltage and energy output. We report a highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts with the formation of an electrode-electrolyte interphase. A full lithium-ion battery of 2.3 volts using such an aqueous electrolyte was demonstrated to cycle up to 1000 times, with nearly 100% coulombic efficiency at both low (0.15 coulomb) and high (4.5 coulombs) discharge and charge rates.
Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g), low potential (-0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMnO or O cathodes-the former deliver 180 W h kg while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg (1,000 W h kg based on the cathode) for >200 cycles.
Rechargeable aqueous Zn/MnO battery chemistry in a neutral or mildly acidic electrolyte has attracted extensive attention recently because all the components (anode, cathode, and electrolyte) in a Zn/MnO battery are safe, abundant, and sustainable. However, the reaction mechanism of the MnO cathode remains a topic of discussion. Herein, we design a highly reversible aqueous Zn/MnO battery where the binder-free MnO cathode was fabricated by in situ electrodeposition of MnO on carbon fiber paper in mild acidic ZnSO+MnSO electrolyte. Electrochemical and structural analysis identify that the MnO cathode experience a consequent H and Zn insertion/extraction process with high reversibility and cycling stability. To our best knowledge, it is the first report on rechargeable aqueous batteries with a consequent ion-insertion reaction mechanism.
Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we report a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Our battery shows high cycling stability, as evidenced by the efficiencies for Li-metal plating/stripping (99.2%) for a 5 V cathode LiCoPO (~99.81%) and a Ni-rich LiNiMnCoO cathode (~99.93%). At a loading of 2.0 mAh cm, our full cells retain ~93% of their original capacities after 1,000 cycles. Surface analyses and quantum chemistry calculations show that stabilization of these aggressive chemistries at extreme potentials is due to the formation of a several-nanometre-thick fluorinated interphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.