The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 ångström (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.
The influenza A virus RNA-dependent RNA polymerase consists of three subunits-PB1, PB2, and PA. The PB1 subunit is the catalytically active polymerase, catalyzing the sequential addition of nucleotides to the growing RNA chain. The PB2 subunit is a cap-binding protein that plays a role in initiation of viral mRNA synthesis by recruiting capped RNA primers. The function of PA is unknown, but previous studies of temperature-sensitive viruses with mutations in PA have implied a role in viral RNA replication. In this report we demonstrate that the PA subunit is required not only for replication but also for transcription of viral RNA. We mutated evolutionarily conserved amino acids to alanines in the C-terminal region of the PA protein, since the C-terminal region shows the highest degree of conservation between PA proteins of influenza A, B, and C viruses. We tested the effects of these mutations on the ability of RNA polymerase to transcribe and replicate viral RNA. We also tested the compatibility of these mutations with viral viability by using reverse-genetics techniques. A mutant with a histidine-to-alanine change at position 510 (H510A) in the PA protein of influenza A/WSN/33 virus showed a differential effect on transcription and replication. This mutant was able to perform replication (vRNA3cRNA3vRNA), but its transcriptional activity (vRNA3mRNA) was negligible. In vitro analyses of the H510A recombinant polymerase, by using transcription initiation, vRNA-binding, capped-RNAbinding, and endonuclease assays, suggest that the primary defect of this mutant polymerase is in its endonuclease activity.Influenza A virus is a negative-strand RNA virus containing eight segments of single-stranded RNA as its genome (39). The RNA genome is transcribed and replicated by the viral RNA-dependent RNA polymerase in the cell nucleus (21). The viral RNAs (vRNA) are transcribed into mRNAs and replicated through a cRNA intermediate to produce more vRNA molecules. Synthesis of these three RNA species requires different modes of initiation and termination (reviewed in references 23 and 34). Synthesis of mRNAs is primed by short capped RNA fragments that are generated from cellular pre-mRNAs by endonucleolytic cleavage. Consequently, viral mRNA molecules contain a 9-to 17-nucleotide (nt) capped host-derived RNA sequence at their 5Ј ends. On the other hand, the synthesis of cRNA and vRNA molecules is initiated in a primer-independent manner, resulting in triphosphorylated 5Ј ends. Synthesis of mRNAs is prematurely terminated 16 to 17 nucleotides from the 5Ј end of the vRNA template at a sequence of 5 to 7 uridines that acts as a polyadenylation signal (30,47,49). The poly(A) tail is synthesized by the viral RNA polymerase by repeated copying of the U sequence (47). During the synthesis of cRNA molecules, the polyadenylation signal is ignored, resulting in full-length copies of vRNA.All three reactions, i.e., vRNA3mRNA (transcription), vRNA3cRNA (first step of replication), and cRNA3vRNA (second step of replication) are catalyzed b...
Influenza virus RNA-dependent RNA polymerase is a heterotrimeric complex of PB1, PB2, and PA. We show that the individually expressed PB2 subunit can be assembled with the coexpressed PB1-PA dimer in vitro into a transcriptionally active complex. Furthermore, we demonstrate that a model viral RNA promoter can bind to the PB1-PA dimer prior to assembly with PB2. Our results are consistent with a recently proposed model for the sequential assembly of viral RNA polymerase complex in which the PB1-PA dimeric complex and the PB2 monomer are transported into the nucleus separately and then assembled in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.